نتایج جستجو برای: hilbert algebra
تعداد نتایج: 92718 فیلتر نتایج به سال:
The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..
In this note, we characterize Chebyshev subalgebras of unital JB-algebras. We exhibit that if B is Chebyshev subalgebra of a unital JB-algebra A, then either B is a trivial subalgebra of A or A= H R .l, where H is a Hilbert space
in this paper we consider c0-group of unitary operators on a hilbert c*-module e. in particular we show that if a?l(e) be a c*-algebra including k(e) and ?t a c0-group of *-automorphisms on a, such that there is x?e with =1 and ?t (?x,x) = ?x,x t?r, then there is a c0-group ut of unitaries in l(e) such that ?t(a) = ut a ut*.
In this paper we study the unitary equivalence between Hilbert modules over a locally C∗-algebra. Also, we prove a stabilization theorem for countably generated modules over an arbitrary locally C∗-algebra and show that a Hilbert module over a Fréchet locally C∗-algebra is countably generated if and only if the locally C∗-algebra of all ”compact” operators has an approximate unit. 2000 Mathemat...
A Hilbert C∗-module is a generalisation of a Hilbert space for which the inner product takes its values in a C∗-algebra instead of the complex numbers. We use the bracket product to construct some Hilbert C∗-modules over a group C∗-algebra which is generated by the group of translations associated with a wavelet. We shall investigate bracket products and their Fourier transform in the space of ...
In this note we show that an unbounded regular operator t on Hilbert C∗modules over an arbitrary C∗ algebra A has polar decomposition if and only if the closures of the ranges of t and |t| are orthogonally complemented, if and only if the operators t and t∗ have unbounded regular generalized inverses. For a given C∗-algebra A any densely defined A-linear closed operator t between Hilbert C∗-mod...
In this paper we consider C0-group of unitary operators on a Hilbert C*-module E. In particular we show that if A?L(E) be a C*-algebra including K(E) and ?t a C0-group of *-automorphisms on A, such that there is x?E with =1 and ?t (?x,x) = ?x,x t?R, then there is a C0-group ut of unitaries in L(E) such that ?t(a) = ut a ut*.
We study the complexification of real Hilbert C∗-modules over real C∗-algebras. We give an example of a Hilbert Ac-module that is not the complexification of any Hilbert A-module, where A is a real C∗-algebra.
Given a classical symmetric pair, (G, K), with g = Lie(G), we provide descriptions of the Hilbert series of the algebra of K-invariant vectors in the associated graded algebra of U(g) viewed as a K-representation under restriction of the adjoint representation. The description illuminates a certain stable behavior of the Hilbert series, which is investigated in a case-by-case basis. We note tha...
Let $R$ be a positively graded algebra over field. We say that is Hilbert-cyclotomic if the numerator of its reduced Hilbert series has all roots on unit circle. Such rings arise naturally in commutative algebra, numerical semigroup theory and Ehrhart theory. If standard graded, we prove that, under additional hypothesis Koszul or an irreducible $h$-polynomial, algebras coincide with complete i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید