نتایج جستجو برای: hidden layer
تعداد نتایج: 345063 فیلتر نتایج به سال:
this study shows the usefulness of artificial neural network (ann) in maintenance planning and man-agement. an ann model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. the model achieved an accuracy of over 70% in predicting the expected downtime.
Hidden layers plays a vital role in the performance of Back Propagation Neural Network especially in the case where problems related to arbitrary decision boundary to arbitrary accuracy with rational activation functions are encountered. Also, multiple hidden layer can approximate any smooth mapping to any accuracy. The process of deciding the number of hidden layers and number of neurons in ea...
investigation of soil properties like cation exchange capacity (cec) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. pedotransfer functions (ptfs) provide an alternative by estimating soil parameters from more readily available soil data...
Abstract Erosion and sedimentation are the most complicated problems in hydrodynamic which are very important in water-related projects of arid and semi-arid basins. For this reason, the presence of suitable methods for good estimation of suspended sediment load of rivers is very valuable. Solving hydrodynamic equations related to these phenomenons and access to a mathematical-conceptual mode...
results survival probabilities at different times were determined using the cox proportional hazards and a neural network with three nodes in the hidden layer; the ratios of standard errors with these two methods to the kaplan-meier method were 1.1593 and 1.0071, respectively, revealed a significant difference between cox and kaplan-meier (p < 0.05) and no significant difference between cox and...
To infer a multilayer representation of high-dimensional count vectors, we propose the Poisson gamma belief network (PGBN) that factorizes each of its layers into the product of a connection weight matrix and the nonnegative real hidden units of the next layer. The PGBN’s hidden layers are jointly trained with an upward-downward Gibbs sampler, each iteration of which upward samples Dirichlet di...
We discuss how to build sparse one hidden layer MLP replacing the standard l2 weight decay penalty on all weights by an l1 penalty on the linear output weights. We will propose an iterative two step training procedure where the output weights are found using FISTA proximal optimization algorithm to solve a Lasso-like problem and the hidden weights are computed by unconstrained minimization. As ...
The purpose of this paper is to classify the LISS-III satellite images into different classes as agriculture, urban and water body. Here pixel based classification is used to classify each pixel of the satellite image as belonging to one of those three classes. To perform this classification, a neural network back propagation technique is used. The neural network consists of three layers: Input...
Some novel strategies have recently been proposed for single hidden layer neural network training that set randomly the weights from input to hidden layer, while weights from hidden to output layer are analytically determined by pseudoinversion. These techniques are gaining popularity in spite of their known numerical issues when singular and/or almost singular matrices are involved. In this pa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید