نتایج جستجو برای: hammerstein fredholm and volterra integral equations
تعداد نتایج: 16903358 فیلتر نتایج به سال:
degenerate kernel approximation method is generalized to solve hammerstein system of fredholm integral equations of the second kind. this method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. convergence analysis is investigated and on some test problems, the propo...
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
In this paper a numerical technique is presented for the solution of fuzzy linear Volterra-Fredholm-Hammerstein integral equations. This method is a combination of collocation method and radial basis functions(RBFs).We first solve the actual set are equivalent to the fuzzy set, then answer 1-cut into the equation. Also high convergence rates and good accuracy are obtain with the propose method ...
in this paper, we present a numerical method for solving nonlinear fredholm and volterra integral equations of the second kind which is based on the use of haar wavelets and collocation method. we use properties of block pulse functions (bpf) for solving volterra integral equation. numerical examples show efficiency of the method.
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...
in this paper we investigate the existence and uniqueness for volterra-fredholm type integral equations and extension of this type of integral equations. the result is obtained by using the coupled fixed point theorems in the framework of banach space $ x=c([a,b],mathbb{r})$. finally, we give an example to illustrate the applications of our results.
In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...
Abstract A new numerical method based on Haar wavelet is proposed for two-dimensional nonlinear Fredholm, Volterra and Volterra-Fredholm integral equations of first and second kind. The proposed method is an extension of the Haar wavelet method [1–3] from one-dimensional nonlinear integral equations (Fredholm and Volterra) to twodimensional nonlinear integral equations (Fredholm, Volterra and V...
Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the computation of Volterra–Fredholm Integral equations to a system of algebraic equations. Some num...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید