نتایج جستجو برای: graphitic carbon nitride
تعداد نتایج: 294191 فیلتر نتایج به سال:
Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered grap...
A series of rod-like porous graphitic-carbon nitrides (short as CNs) with enhanced in-plane ordering have been fabricated through self-assembled heptazine hydrate precursors for the first time. By controlling the calcination of the preformed precursors with different temperature-rising rates, the resulted CNs (SAHEP-CNs-1) with the most ordered and least stacked graphitic planar are showing a t...
We report a new and effective method to prepare high activity graphitic carbon nitride (g-C3N4) by a simple ammonia etching treatment. The obtained g-C3N4 displays a high BET surface area and enhanced electron/hole separation efficiency. The hydrogen evolution rates improved from 52 μmol h(-1) to 316.7 μmol h(-1) under visible light.
An optimized and general synthetic strategy based on in-situ iodine modifying of polymeric graphitic carbon nitride is discussed. The as-prepared iodine functionalized g-CN shows enhanced electronic and optical properties, as well as increased photocatalytic activities in an assay of hydrogen evolution.
Graphitic carbon nitride (g-C3N4) quantum dots (CNQDs) were prepared from bulk g-C3N4 directly by a thermal-chemical etching process. The CNQDs show strong blue emission as well as upconversion behavior, which can be used as universal energy-transfer components in visible-light-driven metal-free photocatalytic systems.
We report the biodegradable supramolecular quantum dots (SQDs) of hydrogen-bonded graphitic carbon nitride (g-C3N4) with low cytotoxicity and desirable biocompatibility for promising upconversion-enabled fluorescent bio-probes. A remarkable biodegradation of up to 97% within 24 hours is presented.
In this communication, we demonstrate for the first time that ultrathin graphitic carbon nitride (g-C₃N₄) nanosheets can serve as a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide. We further demonstrate its application for electrochemical glucose biosensing in both buffer solution and human serum medium with a detection limit of 11 μM and 45 μM, ...
Highly fluorescent graphitic carbon nitride quantum dots (g-CNQDs) with a quantum yield of 42% are synthesized by a low-temperature solid-phase method with urea and sodium citrate as the precursors. Notably, the tunable emission of g-CNQDs can be achieved by simply adjusting the molar ratio of the two reactants.
The nature of a nickel-based co-catalyst deposited on a sol-gel prepared porous graphitic-carbon nitride (sg-CN), for photocatalytic H2 production from water, has been investigated. The formation of the active catalytic species, charge separation and recombination of the photogenerated electrons and holes during photochemical H2 evolution has been determined for the first time using in situ EPR...
Platinum (Pt) nanoparticles with <4 nm diameter loaded on graphitic carbon nitride (g-C3N4) by reduction at 673 K behave as efficient co-catalysts for photocatalytic hydrogen evolution under visible light (λ >420 nm). This is achieved by strong Pt-support interaction due to the high temperature treatment, which facilitates efficient transfer of photoformed conduction band electrons on g-C3N4 to...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید