نتایج جستجو برای: graph labeling
تعداد نتایج: 252636 فیلتر نتایج به سال:
a $(p,q)$ graph $g$ is said to have a $k$-odd mean labeling $(k ge 1)$ if there exists an injection $f : v to {0, 1, 2, ldots, 2k + 2q - 3}$ such that the induced map $f^*$ defined on $e$ by $f^*(uv) = leftlceil frac{f(u)+f(v)}{2}rightrceil$ is a bijection from $e$ to ${2k - 1, 2k + 1, 2k + 3, ldots, 2 k + 2q - 3}$. a graph that admits $k$...
let g be a (p,q) graph. an injective map f : e(g) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: v (g) → z - {0} defined by f*(v) = σp∈ev f (e) is one-one where ev denotes the set of edges in g that are incident with a vertex v and f*(v (g)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} u {±k(p+1)/2} according a...
Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...
let $g=(v,e)$ be a connected simple graph. a labeling $f:v to z_2$ induces two edge labelings $f^+, f^*: e to z_2$ defined by $f^+(xy) = f(x)+f(y)$ and $f^*(xy) = f(x)f(y)$ for each $xy in e$. for $i in z_2$, let $v_f(i) = |f^{-1}(i)|$, $e_{f^+}(i) = |(f^{+})^{-1}(i)|$ and $e_{f^*}(i) = |(f^*)^{-1}(i)|$. a labeling $f$ is called friendly if $|v_f(1)-v_f(0)| le 1$. for a friendly labeling $f$ of...
Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an ...
let $g=(v, e)$ be a graph with $p$ vertices and $q$ edges. an emph{acyclic graphoidal cover} of $g$ is a collection $psi$ of paths in $g$ which are internally-disjoint and cover each edge of the graph exactly once. let $f: vrightarrow {1, 2, ldots, p}$ be a bijective labeling of the vertices of $g$. let $uparrow!g_f$ be the directed graph obtained by orienting the...
let g=(v,e) be a simple graph. an edge labeling f:e to {0,1} induces a vertex labeling f^+:v to z_2 defined by $f^+(v)equiv sumlimits_{uvin e} f(uv)pmod{2}$ for each $v in v$, where z_2={0,1} is the additive group of order 2. for $iin{0,1}$, let e_f(i)=|f^{-1}(i)| and v_f(i)=|(f^+)^{-1}(i)|. a labeling f is called edge-friendly if $|e_f(1)-e_f(0)|le 1$. i_f(g)=v_f(1)-v_f(0) is called the edge-f...
The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling with $d$ labels that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید