نتایج جستجو برای: graded prime submodules
تعداد نتایج: 73941 فیلتر نتایج به سال:
The paper uses a new approach to investigate prime submodules and minimal prime submodules of certain modules such as Artinian and torsion modules. In particular, we introduce a concrete formula for the radical of submodules of Artinian modules.
<abstract><p>Let $ R be a G graded commutative ring and M $-graded $-module. The set of all second submodules is denoted by Spec_G^s(M), it called the spectrum $. We discuss rings with Noetherian prime spectrum. In addition, we introduce notion Zariski socle explore their properties. also investigate Spec^s_G(M) topology from viewpoint being space.</p></abstract>
let be a graded ring and be a graded -module. we define a topology on graded prime spectrum of the graded -module which is analogous to that for , and investigate several properties of the topology.
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.
We call a module M , quasi-catenary if for each pair of quasi-prime submodules K and L of M with K L all saturated chains of quasi-prime submodules of M from K to L have a common finite length. We show that any homomorphic image of a quasi-catenary module is quasi-catenary. We prove that if M is a module with following properties: (i) Every quasi-prime submodule of M has finite quasi-height;...
let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n 2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...
Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...
throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید