نتایج جستجو برای: gmdh neural networks jel classification c45

تعداد نتایج: 1097290  

2003
Geraint Johnes Anna Vignoles

Regression and neural network models of wage determination are constructed where the explanatory variables include detailed information about the impact of school curricula on future earnings. It is established that there are strong nonlinearities and interaction effects present in the relationship between curriculum and earnings. The results have important implications in the context of the hu...

Journal: :Neural networks : the official journal of the International Neural Network Society 2003
Nikolay I. Nikolaev Hitoshi Iba

This paper presents a constructive approach to neural network modeling of polynomial harmonic functions. This is an approach to growing higher-order networks like these build by the multilayer GMDH algorithm using activation polynomials. Two contributions for enhancement of the neural network learning are offered: (1) extending the expressive power of the network representation with another com...

In this paper, experimental responses of the clamped mild steel, copper, and aluminium circular plates are presented subjected to blast loading. The GMDH-type neural networks (Group Method of Data Handling) are then used for the modelling of the mid-point deflection thickness ratio of the circular plates using those experimental results. The aim of such modelling is to show how the mid-point de...

ژورنال: :مجله تحقیقات اقتصادی 2010
حمید ابریشمی محسن مهرآرا مهدی احراری سوده میرقاسمی

در این مقاله از شبکة عصبی gmdh، به‎عنوان ابزاری با قابلیت بالا در مسیریابی و تشخیص روند‎های غیرخطی پیچیده، به‎ویژه با تعداد مشاهدات محدود، برای الگوسازی و پیش‎بینی رشد تولید ناخالص داخلی به قیمت ثابت در ایران استفاده شده است. ابتدا الگویی بنیادی شامل 7 متغیر همراه با وقفة اول رشد تولید ناخالص داخلی طراحی و سپس با استفاده از فرآیند قیاسی و نیز کنارگذاشتن هر متغیر از الگوی بنیادی، در مجموع 18 مدل...

2016
Olha Moroz

This survey deals with up-to-date results in the field of hybrid algorithms development of GMDH-type Neural Networks (GMDH-NN) and other methods of Artificial Intelligence (AI) which are successfully used for solving complex economic problems. Such hybrid algorithms are now only in its early stage of active research. General characteristics and main weaknesses of GMDH-NN are firstly presented. ...

1997
Ramazan Gençay

Technical traders base their analysis on the premise that the patterns in market prices are assumed to recur in the future, and thus, these patterns can be used for predictive purposes. This paper uses the daily Dow Jones Industrial Average Index from 1897 to 1988 to examine the linear and nonlinear predictability of stock market returns with simple technical trading rules. The nonlinear specif...

Journal: :CoRR 2001
Vitaly Schetinin

A neural network based technique is presented, which is able to successfully extract polynomial classification rules from labeled electroencephalogram (EEG) signals. To represent the classification rules in an analytical form, we use the polynomial neural networks trained by a modified Group Method of Data Handling (GMDH). The classification rules were extracted from clinical EEG data that were...

Journal: Iranian Economic Review 2018

O ne of the key topics and the most important tools to determine the strengths, weaknesses, opportunities and threats of each organization and company is the evaluation the performance of organizational activities that rating and ranking follows the internal and external goals. In this regard insurance companies similarly are looking for evaluation of their branches through scoring, ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علامه طباطبایی - دانشکده اقتصاد 1393

due to extraordinary large amount of information and daily sharp increasing claimant for ui benefits and because of serious constraint of financial barriers, the importance of handling fraud detection in order to discover, control and predict fraudulent claims is inevitable. we use the most appropriate data mining methodology, methods, techniques and tools to extract knowledge or insights from ...

Journal: :تحقیقات اقتصادی 0
پیام حنفی زاده استادیار گروه مدیریت صنعتی، دانشگاه علامه طباطبائی، دانشکدة مدیریت و حسابداری حسین پورسلطانی کارشناسی ارشد مدیریت فنّ آوری اطلاعات، دانشگاه علاّمه طباطبائی، دانشکدة مدیریت و حسابداری پریسا ساکتی کارشناسی ارشد مدیریت فنّ آوری اطلاعات، دانشگاه علامه طباطبائی، دانشکدة مدیریت و حسابداری

this article is a comparative study of estimation power of artificial neural networks and autoregressive time series models in inflation forecasting. using 37 years iran’s inflation data, neural networks performs better on average for short horizons than autoregressive models. this study shows usefulness of early stopping technique in learning stage of neural networks for estimating time series...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید