نتایج جستجو برای: gjb2 gene
تعداد نتایج: 1141753 فیلتر نتایج به سال:
Mutations in the GJB2 gene are responsible for up to 50% of cases of non-syndromic recessive hearing loss, with c.35delG, c.167delT and c.235delC being the predominant mutations in many world populations. However, a large number of rare mutations in this gene may also contribute to hearing loss. The aim of the present study was to conduct a clinical and molecular characterization of a Chinese f...
Pathogenic variants in the GJB2 gene, encoding connexin 26, are known to be a major cause of hearing impairment (HI). More than 300 allelic variants have been identified in the GJB2 gene. Spectrum and allelic frequencies of the GJB2 gene vary significantly among different ethnic groups worldwide. Until now, the spectrum and frequency of the pathogenic variants in exon 1, exon 2 and the flanking...
Mutations in the GJB2 gene are the most common cause of sensorineural non-syndromic deafness in different populations. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in many countries. The aim of this study was to determine the prevalence of GJB2 mutations and the del(GJB6-D13S1830) mutation in non-syndromic deaf Brazilians. The 33 unrel...
mutations in the gjb2 gene are the most common known cause of hereditary congenital hearing loss. rapid genomic dna extraction (rgde) method was used for genomic dna extraction. after amplification of coding region of cx26 gene with specific primers, expected pcr products with 724bp length were subjected to direct sequencing in both directions. we describe here a novel heterozygous -t to -c tra...
South European cases with autosomal recessive inherited hearing loss (4,8). The frequent incidence of the 35delG mutation requires analyzing both affected individuals and parents (in terms of being carriers) for genetic counseling. The aim of this study was to determine the frequency of GJB2 gene mutations in patients with congenital NSSNHL and to investigate new mutations of the GJB2 gene in o...
Hearing loss is the most widespread sensory disorder, with an incidence of congenital genetic deafness of 1 in 1600 children. For many ethnic populations, the most prevalent form of genetic deafness is caused by recessive mutations in the gene gap junction protein, beta 2, 26 kDa (GJB2), which is also known as connexin 26 (Cx26). Despite this knowledge, existing treatment strategies do not comp...
BACKGROUND Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common hereditary form of deafness, and exhibits a great deal of genetic heterogeneity. So far, more than seventy various DFNB loci have been mapped for ARNSHL by linkage analysis. The contribution of three common DFNB loci including DFNB3, DFNB9, DFNB21 and gap junction beta-2 (GJB2) gene mutations in ARNSHL was inv...
OBJECTIVE To assess the spectrum and prevalence of mutations in the GJB2 gene in Portuguese nonsyndromic sensorineural hearing loss (NSSHL) patients. DESIGN Sequencing of the coding region, basal promoter, exon 1, and donor splice site of the GJB2 gene; screening for the presence of the two common GJB6 deletions. STUDY SAMPLE A cohort of 264 Portuguese NSSHL patients. RESULTS At least one...
Objective(s) Despite the enormous heterogeneity of genetic hearing loss, most non-syndromic hearing losses are caused by mutations in the GJB2 gene. We aimed to characterize the mutation profiles of 100 Iranian deaf patients that were under 10 years old. Materials and Methods Patients were tested with direct sequencing of entire coding region of the GJB2 gene. Results Eight known mutations...
Mutations in GJB2, the gene encoding connexin-26 at the DFNB1 locus on 13q12, are found in as many as 50% of subjects with autosomal recessive, nonsyndromic prelingual hearing impairment. However, genetic diagnosis is complicated by the fact that 10%-50% of affected subjects with GJB2 mutations carry only one mutant allele. Recently, a deletion truncating the GJB6 gene (encoding connexin-30), n...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید