نتایج جستجو برای: fuzzy c means fcm

تعداد نتایج: 1452436  

2013
Mousa nazari Jamshid Shanbehzadeh

Semi-supervised learning is somewhere between unsupervised and supervised learning. In fact, most semi-supervised learning strategies are based on extending either unsupervised or supervised learning to include additional information typical of the other learning paradigm. Constraint fuzzy c-means a novel semi-supervised fuzzy c-means algorithm proposed by Li et al [1]. Constraint FCM like FCM ...

2008
SEN-CHI YU Sen-Chi Yu Yuan-Horng Lin

The purpose of this study is to apply fuzzy theory on health care. To achieve this goal, Beck Depression Inventory (BDI)-II was adopted as the instrument and outpatients of a psychiatric clinic were recruited as samples and undergraduates as non-clinical sample as well. To elicit the membership degree, we asked the subjects are free to choose more than one alternative for each item listed in BD...

2004
Ameer Ali Gour C Karmakar Laurence S Dooley

Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixel location, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having ...

Journal: :CoRR 2010
S. Zulaikha Beevi M. Mohammed Sathik K. Senthamaraikannan

Medical image segmentation demands an efficient and robust segmentation algorithm against noise. The conventional fuzzy c-means algorithm is an efficient clustering algorithm that is used in medical image segmentation. But FCM is highly vulnerable to noise since it uses only intensity values for clustering the images. This paper aims to develop a novel and efficient fuzzy spatial c-means cluste...

2013
Nour-Eddine el Harchaoui Mounir Ait Kerroum Ahmed Hammouch Mohamed Ouadou Driss Aboutajdine

The analysis and processing of large data are a challenge for researchers. Several approaches have been used to model these complex data, and they are based on some mathematical theories: fuzzy, probabilistic, possibilistic, and evidence theories. In this work, we propose a new unsupervised classification approach that combines the fuzzy and possibilistic theories; our purpose is to overcome th...

2010
Ameer Ali Gour C Karmakar Laurence S Dooley

Clustering algorithms are highly dependent on the features used and the type of the objects in a particular image. By considering object similar surface variations (SSV) as well as the arbitrariness of the fuzzy c-means (FCM) algorithm for pixel location, a fuzzy image segmentation considering object surface similarity (FSOS) algorithm was developed, but it was unable to segment objects having ...

Journal: :CoRR 2010
M. Gomathi P. Thangaraj

Image segmentation is a vital part of image processing. Segmentation has its application widespread in the field of medical images in order to diagnose curious diseases. The same medical images can be segmented manually. But the accuracy of image segmentation using the segmentation algorithms is more when compared with the manual segmentation. In the field of medical diagnosis an extensive dive...

2013
Deepali Aneja

Medical image segmentation demands a segmentation algorithm which works against noise. The most popular algorithm used in image segmentation is Fuzzy C-Means clustering. It uses only intensity values for clustering which makes it highly sensitive to noise. The comparison of the three fundamental image segmentation methods based on fuzzy logic namely Fuzzy C-Means (FCM), Intuitionistic Fuzzy C-M...

2014
Ramjeet Singh Yadav P. Ahmed A. K. Soni Saurabh Pal

This article presents a study of academic performance evaluation using soft computing techniques inspired by the successful application of K-means, fuzzy C-means (FCM), subtractive clustering (SC), hybrid subtractive clustering-fuzzy C-means (SC-FCM) and hybrid subtractive clustering-adaptive neuro fuzzy inference system (SC-ANFIS) methods for solving academic performance evaluation problems. M...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید