For a graph G = (V,E) and a binary labeling (coloring) f : V (G) → Z2, let vf (i) = |f−1(i)|. f is said to be friendly if |vf (1) − vf (0)| ≤ 1. The labeling f : V (G) → Z2 induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) = |f(x)− f(y)| ∀xy ∈ E(G). Let ef (i) = |f∗−1(i)|. The friendly index set of the graph G, denoted by FI(G), is defined by FI(G) = {|ef (1)− ef (0)| : f is a friendly ...