نتایج جستجو برای: fractional order calculus
تعداد نتایج: 1004673 فیلتر نتایج به سال:
An extension of the general fractional calculus (GFC) an arbitrary order, proposed by Luchko, is formulated. This also based on a multi-kernel approach, in which Laplace convolutions different Sonin kernels are used. The GFC order considered for case intervals (a,b) where ??<a<b??. Examples operators orders proposed.
Introduction to the Concepts and Applications of Fractional and Variable Order Differential Calculus
Understanding the concepts of fractional and variable order differential calculus requires a willingness to depart from the traditional physical interpretations through which calculus is generally understood. Fractional calculus involves the computation of a derivative or integral of any real order, rather than just an integer. Several definitions for calculating a real order derivative or inte...
The aim of this paper is to design a Fractional Order Sliding Mode Controllers (FOSMC)for a class of DC-DC converters such as boost and buck converters. Firstly, the control lawis designed with respect to the properties of fractional calculus, the design yields an equiv-alent control term with an addition of discontinuous (attractive) control law. Secondly, themathematical proof of the stabilit...
Fractional calculus; Conformable operators; Calculus on time scales Abstract A conformable time-scale fractional calculus of order a 2 0; 1 is introduced. The basic tools for fractional differentiation and fractional integration are then developed. The Hilger timescale calculus is obtained as a particular case, by choosing a 1⁄4 1. a 2015 The Authors. Production and hosting by Elsevier B.V. on ...
In this paper, a class of fractional order systems is considered and simple fractional order observers have been proposed to estimate the system’s state variables. By introducing a fractional calculus into the observer design, the developed fractional order observers guarantee the estimated states reach the original system states. Using the fractional order Lyapunov approach, the stability (zer...
. . . . . . . . . . . . . . . . . . . . . . . . . p. 223
Fractional calculus was introduced in many fields of science and engineering long time ago. It was first developed by mathematicians in the middle of the ninetieth century. During the past decades, fractional calculus has gained great interest in several applications [1]. For instance, fractional order systems and controllers have been applied to improve performance and robustness properties in...
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples o...
Fractional calculus is the generalization of integer-order calculus to rational order. This subject has at least three hundred years of history. However, it was traditionally regarded as a pure mathematical field and lacked real world applications for a very long time. In recent decades, fractional calculus has re-attracted the attention of scientists and engineers. For example, many researcher...
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید