نتایج جستجو برای: fixing nodules
تعداد نتایج: 33263 فیلتر نتایج به سال:
Nodulation ability was tested for Frankia strains HFPCcI3 and EL1, and Frankia sources A.t. and G.a. from Allocasaurina torulosa and Gymnostoma australianum, respectively, on A. torulosa Miq., Casuarina cunninghamiana Miq., G. australianum L. Johnson and Elaeagnus triflora Roxb. It was shown that A. torulosa and C. cunninghamiana formed nodules only with the Frankia sources obtained from their ...
Phosphoenolpyruvate carboxylase (PEPC) plays a crucial role in the assimilation of CO2 during symbiotic N2 fixation in legume root nodules. In this study, an alfalfa PEPC gene (PEPC-7), whose transcripts are found at elevated levels in nodules relative to either leaves or roots, has been isolated and characterized. The intron/exon structure of this gene is identical to that of most other plant ...
Rhizobium (now Sinorhizobium) fredii is a symbiotic nitrogen-fixing bacterium that can nodulate soybean in a cultivar-specific manner. This process is governed by a set of negatively acting nodulation genes termed nolXWBTUV. These genes prevent R. fredii strain USDA257 from infecting soybean cultivars such as McCall, but they do not block nodulation of cultivar Peking. R. fredii strain USDA191 ...
Soybean (Glycine max [L.] Merr. cv Davis) was grown in a split-root growth system designed to maintain control of the root atmosphere. Two experiments were conducted to examine how 80% Ar:20% O(2) (Ar:O(2)) and air (Air) atmospheres affected N assimilation (NH(4)NO(3) and N(2) fixation) and the partitioning of photosynthate to roots and nodules. Application of NH(4)NO(3) to nonnodulated half-ro...
The specific interaction between legumes and Rhizobium-type bacteria leads to the establishment of a symbiotic relationship characterized by the formation of new differentiated organs named nodules, which provide a niche for bacterial nitrogen (N2) fixation. In the nodules, bacteria differentiate into bacteroids with the ability to fix atmospheric N2 via nitrogenase activity. As nitrogenase is ...
Rhizobia and legumes are able to interact in a symbiotic way leading to the development of root nodules. Within nodules, rhizobia fix nitrogen for the benefit of the plant. These interactions are efficient because spectacularly high densities of nitrogen fixing rhizobia are maintained in the plant cells. DNF2, a Medicago truncatula gene has been described as required for nitrogen fixation, bact...
In actinorhizal symbioses, filamentous nitrogen-fixing soil bacteria of the genus Frankia induce the formation of nodules on the roots of a diverse group of dicotyledonous plants representing trees or woody shrubs, with one exception, Datisca glomerata. In the nodules, Frankia fixes nitrogen and exports the products to the plant cytoplasm, while being supplied with carbon sources by the host. P...
Parasponia, a woody member of the elm family, is the only nonlegume genus whose members are known to form an effective nitrogen-fixing symbiosis with a Rhizobium species. The bacterial strain RP501 is a slow-growing strain of Rhizobium isolated from Parasponia nodules. Strain RP501 also nodulates the legumes siratro (Macroptilium atropurpureum) and cowpea (Vigna unguiculata). Using a cosmid clo...
Legumes are able to form a symbiotic relationship with nitrogen-fixing soil bacteria called rhizobia. The result of this symbiosis is to form nodules on the plant root, within which the bacteria can convert atmospheric nitrogen into ammonia that can be used by the plant. Establishment of a successful symbiosis requires the two symbiotic partners to be compatible with each other throughout the p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید