نتایج جستجو برای: fermi energy

تعداد نتایج: 681204  

2002
M. Szopa M. Margańska

Persistent currents driven by a static magnetic flux parallel to the carbon nanotube axis are investigated. Owing to the hexagonal symmetry of graphene the Fermi contour expected for a 2D-lattice reduces to two points. However the electron or hole doping shifts the Fermi energy upwards or downwards and as a result, the shape of the Fermi surface changes. Such a hole doping leading to the Fermi ...

F. Azarakhshi, G.R. Ghshami M. Khaleghian,

To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...

اعظم انبارکی, , زهرا امینی لاری , , زهره کارگر, ,

The knowledge of nuclear reaction rates is important for studying energy production and nucleosynthesis, especially in reactions including nuclei far from stability line, which are not accessible experimentally so far and thus it is necessary to be able to predict reaction cross sections in low excitation energies. Nuclear level density is one of the important key quantities in many nuclear phy...

A. A. Shokri, Z. Karimi

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

جلالی‌اسدآبادی, سعید, قاسمی‌خواه, اسماعیل,

This study investigated the electronic properties of antiferromagnetic UBi2 metal by using ab initio calculations based on the density functional theory (DFT), employing the augmented plane waves plus local orbital method. We used the exact exchange for correlated electrons (EECE) method to calculate the exchange-correlation energy under a variety of hybrid functionals. Electric field gradients...

Journal: :Nano letters 2014
S A Jensen Z Mics I Ivanov H S Varol D Turchinovich F H L Koppens M Bonn K J Tielrooij

For most optoelectronic applications of graphene, a thorough understanding of the processes that govern energy relaxation of photoexcited carriers is essential. The ultrafast energy relaxation in graphene occurs through two competing pathways: carrier-carrier scattering, creating an elevated carrier temperature, and optical phonon emission. At present, it is not clear what determines the domina...

A. A. Shokri, Z. Karimi

By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...

Journal: :Physical review letters 2015
Hung T Dang Jernej Mravlje Antoine Georges Andrew J Millis

Density functional plus dynamical mean field calculations are used to show that in transition metal oxides, rotational and tilting (GdFeO(3)-type) distortions of the ideal cubic perovskite structure produce a multiplicity of low-energy optical transitions which affect the conductivity down to frequencies of the order of 1 or 2 mV (terahertz regime), mimicking non-Fermi-liquid effects even in sy...

   The current study designed and simulated graphene nanosensors for detection of GLY120 tumor-associated carbohydrate antigens. Graphene is a two-dimensional nanosheet that offers a high surface-to-volume ratio and high mobility which increases its sensitivity as a graphene sensor over that of other nanoparticles. The current study simulated graphene sensors with and without GLY12...

2015
C. González-Santander

We calculate the energy levels of two particles trapped in a harmonic potential. The actual two-body potential, assumed to be spherically symmetric, is replaced by a projective operator (non-local separable potential) to determine the energy levels in a closed form. This approach overcomes the limitations of the regularized Fermi pseudopotential when the characteristic length of the two-body in...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید