نتایج جستجو برای: eulerian graphs
تعداد نتایج: 102409 فیلتر نتایج به سال:
Abstract An Eulerian walk (or trail) is a (resp. that visits every edge of graph G at least exactly) once. This notion was first discussed by Leonhard Euler while solving the famous Seven Bridges Königsberg problem in 1736. But what if had to take bus? In temporal $$\varvec{(G,\lambda )}$$ ( G...
Further work of Brylawski and Heron (see [4, p. 315]) explores other characterizations of Eulerian binary matroids. They showed, independently, that a binary matroid M is Eulerian if and only if its dual, M∗, is a binary affine matroid. More recently, Shikare and Raghunathan [5] have shown that a binary matroid M is Eulerian if and only if the number of independent sets of M is odd. This chapte...
A closed walk in a connected graph G that contains every edge of G exactly once is an Eulerian circuit. A graph is Eulerian if it contains an Eulerian circuit. It is well known that a connected graph G is Eulerian if and only if every vertex of G is even. An Eulerian walk in a connected graph G is a closed walk that contains every edge of G at least once, while an irregular Eulerian walk in G i...
In this paper we present further studies of recurrent configurations of Chip-firing games on Eulerian directed graphs (simple digraphs), a class on the way from undirected graphs to general directed graphs. A computational problem that arises naturally from this model is to find the minimum number of chips of a recurrent configuration, which we call the minimum recurrent configuration (MINREC) ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید