نتایج جستجو برای: ensemble methods
تعداد نتایج: 1909616 فیلتر نتایج به سال:
Ensemble methods are learning algorithms that construct a set of classi ers and then classify new data points by taking a weighted vote of their predictions The original ensemble method is Bayesian aver aging but more recent algorithms include error correcting output coding Bagging and boosting This paper reviews these methods and explains why ensembles can often perform better than any single ...
This paper investigates a number of ensemble methods for improving the performance of phoneme classification for use in a speech recognition system. Two ensemble methods are described; boosting and mixtures of experts, both in isolation and in combination. Results are presented on two speech recognition databases: an isolated word database and a large vocabulary continuous speech database. Thes...
An important bottleneck in the development of accurate and robust personality recognition systems based on supervised machine learning, is the limited availability of training data, and the high cost involved in collecting it. In this paper, we report on a proof of concept of using ensemble learning as a way to alleviate the data acquisition problem. The approach allows the use of information f...
Combination methods are an effective way of improving system performance. This paper examines the benefits of system combination for unsupervised WSD. We investigate several votingand arbiterbased combination strategies over a diverse pool of unsupervised WSD systems. Our combination methods rely on predominant senses which are derived automatically from raw text. Experiments using the SemCor a...
Ensembles of classifiers represent one of the main research directions in machine learning. Two main theories are invoked to explain the success of ensemble methods. The first one consider the ensembles in the framework of large margin classifiers, showing that ensembles enlarge the margins, enhancing the generalization capabilities of learning algorithms. The second is based on the classical b...
Ensemble methods for supervised machine learning have become popular due to their ability to accurately predict class labels with groups of simple, lightweight “base learners.” While ensembles offer computationally efficient models that have good predictive capability they tend to be large and offer little insight into the patterns or structure in a dataset. We consider an ensemble technique th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید