نتایج جستجو برای: einstein finsler metric
تعداد نتایج: 106781 فیلتر نتایج به سال:
dually flat finsler metrics form a special and valuable class of finsler metrics in finsler information geometry,which play a very important role in studying flat finsler information structure. in this paper, we prove that everylocally dually flat generalized randers metric with isotropic s-curvature is locally minkowskian.
In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.
a projective parameter of a geodesic as solution of certain ode is defined to be a parameter which is invariant under projective change of metric. using projective parameter and poincaré metric, an intrinsic projectively invariant pseudo-distance can be constructed. in the present work, solutions of the above ode are characterized with respect to the sign of parallel ricci tensor on a finsler s...
for a given riemannian manifold (m,g),it is an interesting question to study the existence of a conformal diffemorphism (also called as a conformal transformation) f : m ! m such that the metric g? = fg has one of the following properties: (i)(m; g?) has constant scalar curvature. (ii)(m; g?) is an einstein manifold.
In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.
in this paper the general relatively isotropic l -curvature finsler metrics are studied. it isshown that on constant relatively landsberg spaces, the concepts of weakly landsbergian, landsbergianand generalized landsbergian metrics are equivalent. some necessary conditions for a relativelyisotropic l -curvature finsler metric to be a riemannian metric are also found.
In this paper we continue the study of the complex Beil metrics, in complex Finsler geometry, [18]. Primarily, we determine the main geometric objects corresponding to these metrics, e.g. the Chern-Finsler complex non-linear connection, the Chern-Finsler complex linear connection and the holomorphic curvature. We focus our study on the cases when a complex Finsler space, endowed with a complex ...
We discuss general notions of metrics and of Finsler structures which we call weak metrics and weak Finsler structures. Any convex domain carries a canonical weak Finsler structure, which we call its tautological weak Finsler structure. We compute distances in the tautological weak Finsler structure of a domain and we show that these are given by the so-called Funk weak metric. We conclude the ...
in this paper, we study a class of finsler metrics which contains the class of p-reducible andgeneral relatively isotropic landsberg metrics, as special cases. we prove that on a compact finsler manifold,this class of metrics is nothing other than randers metrics. finally, we study this class of finsler metrics withscalar flag curvature and find a condition under which these metrics reduce to r...
0
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید