نتایج جستجو برای: eeg classification
تعداد نتایج: 521471 فیلتر نتایج به سال:
The article describes method, process and results of single-trial EEG signal classification using Hidden Markov Models (HMM). EEG accompanying fast extension and flexion movement of right index finger is classified. The aim of our study is to verify classification possibilities of the very closely localized and similar movements. The used classification system is able to distinguish between mov...
Electroencephalography (EEG)-based emotion classification during music listening has gained increasing attention nowadays due to its promise of potential applications such as musical affective brain-computer interface (ABCI), neuromarketing, music therapy, and implicit multimedia tagging and triggering. However, music is an ecologically valid and complex stimulus that conveys certain emotions t...
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
Electroencephalography is a measure of brain activity by wave analysis; it consist number of electrodes. Finding most non-dominant electrode positions in Eye state classification is important task for classification. The proposed work is identifying which electrodes are less responsible for classification. This is a feature selection step required for optimal EEG channel selection. Feature sele...
This paper presents a new approach called clustering technique-based least square support vector machine (CT-LS-SVM) for the classification of EEG signals. Decision making is performed in two stages. In the first stage, clustering technique (CT) has been used to extract representative features of EEG data. In the second stage, least square support vector machine (LS-SVM) is applied to the extra...
Aims and background: This study develops a computational framework for the classification of different anesthesia states, including awake, moderate anesthesia, and general anesthesia, using electroencephalography (EEG) signals and peripheral parameters. Materials and Methods: The proposed method proposes ...
Detection and Classification of Emotions Using Physiological Signals and Pattern Recognition Methods
Introduction: Emotions play an important role in health, communication, and interaction between humans. The ability to recognize the emotional status of people is an important indicator of health and natural relationships. In DEAP database, electroencephalogram (EEG) signals as well as environmental physiological signals related to 32 volunteers are registered. The participants in each video we...
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...
ss as: Pa aud Un Abstract Electroencephalogram (EEG) signals are often used to diagnose diseases such as seizure, alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are not equally reliable due to the artifacts at the time of recording. EEG signal classification algorithms should have a mechanism to handle this issue. It seems that using adaptive classifie...
AbstractAccuracy in identifying the subjects’ intentions for moving their different limbs from EEG signals is regarded as an important factor in the studies related to BCI. In fact, the complexity of motor-imagination and low amount of signal-to-noise ratio for EEG signal makes this identification as a difficult task. In order to overcome these complexities, many techniques such as variou...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید