نتایج جستجو برای: dual baer modules
تعداد نتایج: 213494 فیلتر نتایج به سال:
Let $R$ be a ring, $sigma$ be an endomorphism of $R$ and $M_R$ be a $sigma$-rigid module. A module $M_R$ is called quasi-Baer if the right annihilator of a principal submodule of $R$ is generated by an idempotent. It is shown that an $R$-module $M_R$ is a quasi-Baer module if and only if $M[[x]]$ is a quasi-Baer module over the skew power series ring $R[[x,sigma]]$.
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
in this paper, we investigate various kinds of extensions of twin-good rings. moreover, we prove that every element of an abelian neat ring r is twin-good if and only if r has no factor ring isomorphic to z2 or z3. the main result of [24] states some conditions that any right self-injective ring r is twin-good. we extend this result to any regular baer ring r by proving that every element of a...
In this paper, we introduce the concept of $g$-dual frames for Hilbert $C^{*}$-modules, and then the properties and stability results of $g$-dual frames are given. A characterization of $g$-dual frames, approximately dual frames and dual frames of a given frame is established. We also give some examples to show that the characterization of $g$-dual frames for Riesz bases in Hilbert spaces is ...
In this paper, we investigate various kinds of extensions of twin-good rings. Moreover, we prove that every element of an abelian neat ring R is twin-good if and only if R has no factor ring isomorphic to Z2 or Z3. The main result of [24] states some conditions that any right self-injective ring R is twin-good. We extend this result to any regular Baer ring R by proving that every elemen...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید