نتایج جستجو برای: dimension of modules
تعداد نتایج: 21176157 فیلتر نتایج به سال:
the concepts of free modules, projective modules, injective modules and the likeform an important area in module theory. the notion of free fuzzy modules was introducedby muganda as an extension of free modules in the fuzzy context. zahedi and ameriintroduced the concept of projective and injective l-modules. in this paper we give analternate definition for projective l-modules. we prove that e...
The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary generalized local cohomology modules. Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$ are finitely generated $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...
Let ?: R0?R be a ring homomorphism and suppose that a and a0, respectively, are ideals of R and R0 such that is an Artinian ring. Let M and N be two finitely generated R-modules and suppose that (R0,m0) is a local ring. In this note we prove that the R-modules and are Artinian for all integers i and j, whenever and . Also we will show that if a is principal, then the R-modules and ...
We introduce and study the concept of $alpha $-semi short modules.Using this concept we extend some of the basic results of $alpha $-short modules to $alpha $-semi short modules.We observe that if $M$ is an $alpha $-semi short module then the dual perfect dimension of $M$ is $alpha $ or $alpha +1$.%In particular, if a semiprime ring $R$ is $alpha $-semi short as an $R$-module, then its Noetheri...
We characterize the modules of infinite projective dimension over endomorphism algebras Oppermann–Thomas cluster-tilting objects X in (n+2)-angulated categories (
the generalized principal ideal theorem is one of the cornerstones of dimension theory for noetherian rings. for an r-module m, we identify certain submodules of m that play a role analogous to that of prime ideals in the ring r. using this definition, we extend the generalized principal ideal theorem to modules.
It is shown that if $M$ is an Artinian module over a ring $R$, then $M$ has Noetherian dimension $alpha $, where $alpha $ is a countable ordinal number, if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha +1}$, where $ it{l}(M)$ is the length of $M$, $i.e.,$ the least ordinal number such that the interval $[0, it{l}(M))$ cannot be embedded in the lattice of all su...
one of the most important goals for increasing recognition and treatment revenue is transmitting vital data to medical care team, more quickly. nowadays, use of new technologies for transmitting data will deploy more and more daily. in this article, for transmitting electrocardiogram, first we code the signal into a suite of codes, then we will use bluetooth technology to transmit data from off...
The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this definition, we extend the Generalized Principal Ideal Theorem to modules.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید