نتایج جستجو برای: cordial labeling
تعداد نتایج: 58050 فیلتر نتایج به سال:
Recently three prime cordial labeling behavior of path, cycle, complete graph, wheel, comb, subdivison of a star, bistar, double comb, corona of tree with a vertex, crown, olive tree and other standard graphs were studied. Also four prime cordial labeling behavior of complete graph, book, flower were studied. In this paper, we investigate the four prime cordial labeling behavior of corona of wh...
A binary vertex coloring (labeling) f : V (G) → Z2 of a graph G is said to be friendly if the number of vertices labeled 0 is almost the same as the number of vertices labeled 1. This friendly labeling induces an edge labeling f∗ : E(G) → Z2 defined by f∗(uv) = f(u)f(v) for all uv ∈ E(G). Let ef (i) = |{uv ∈ E(G) : f∗(uv) = i}| be the number of edges of G that are labeled i. Product-cordial ind...
A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2,... | |} V such that an edge uv is assigned the label 1 if either ( ) | ( ) f u f v or ( ) | ( ) f v f u and the label 0 if ( ) ( ) f u f v , then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a divisor cordial labeling is called a divisor cordial ...
Abstract. A divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2,... | |} V such that an edge uv is assigned the label 1 if ( ) | ( ) f u f v or ( ) | ( ) f v f u and the label 0 otherwise, then number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a divisor cordial labeling is called a divisor cordial graph. ...
In this paper we prove that the extended triplicate graph (ETG) of finite paths admits product E-cordial, total product E-cordial labelings. We show that ETG of finite paths of length n where n ∉ {4m-3|m∈N} admits E-Cordial, total E-cordial labelings and also we prove the existence of Z3 – magic labeling for the modified Extended Triplicate graph.
In this paper we prove that the split graphs of 1,n K and are prime cordial graphs. We also show that the square graph of is a prime cordial graph while middle graph of is a prime cordial graph for . Further we prove that the wheel graph admits prime cordial labeling for . , n n B n , n n B n P 8 4 n
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a function. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if ∣∣vf (i)− vf (j)∣∣ 6 1, i, j ∈ {1, 2, . . . , k} and ∣∣ef (0)− ef (1)∣∣ 6 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled ...
Hovey introduced A-cordial labelings in [4] as a simultaneous generalization of cordial and harmonious labelings. If A is an abelian group, then a labeling f : V (G) → A of the vertices of some graph G induces an edgelabeling on G; the edge uv receives the label f(u) + f(v). A graph G is A-cordial if there is a vertex-labeling such that (1) the vertex label classes differ in size by at most one...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید