نتایج جستجو برای: constraint qualification
تعداد نتایج: 85095 فیلتر نتایج به سال:
We consider a difficult class of optimization problems that we call a mathematical program with vanishing constraints. Problems of this kind arise in various applications including optimal topology design problems of mechanical structures. We show that some standard constraint qualifications like LICQ and MFCQ usually do not hold at a local minimum of our program, whereas the Abadie constraint ...
We are concerned with a nonsmooth multiobjective optimization problem with inequality constraints. In order to obtain our main results, we give the definitions of the generalized convex functions based on the generalized directional derivative. Under the above generalized convexity assumptions, sufficient and necessary conditions for optimality are given without the need of a constraint qualifi...
The most famous open problem in Monotone Operator Theory concerns the maximal monotonicity of the sum of two maximally monotone operators provided that Rockafellar’s constraint qualification holds. In this paper, we prove the maximal monotonicity of A+B provided that A,B are maximally monotone and A is a linear relation, as soon as Rockafellar’s constraint qualification holds: domA ∩ int domB 6...
Investigation of optimality conditions has been one the most interesting topics in theory multiobjective optimisation problems (MOP). To derive necessary MOP, we consider assumptions called constraints qualifications. It is recognised that Guignard Constraint Qualification (GCQ) efficient and general assumption for scalar objective problems; however, GCQ does not ensure Karush-Kuhn Tucker (KKT)...
Kyparisis proved in 1985 that a strict version of the MangasarianFromovitz constraint qualification (MFCQ) is equivalent to the uniqueness of Lagrange multipliers. However, the definition of this strict version of MFCQ requires the existence of a Lagrange multiplier and is not a constraint qualification (CQ) itself. In this note we show that LICQ is the weakest CQ which ensures (existence and) ...
We give the weakest constraint qualification known to us that ensures the maximal monotonicity of the operator A∗ ◦ T ◦A when A is a linear continuous mapping between two reflexive Banach spaces and T is a maximal monotone operator. As a special case we get the weakest constraint qualification that ensures the maximal monotonicity of the sum of two maximal monotone operators on a reflexive Bana...
For a general infinite system of convex inequalities in a Banach space, we study the basic constraint qualification and its relationship with other fundamental concepts, including various versions of conditions of Slater type, the Mangasarian–Fromovitz constraint qualification, as well as the Pshenichnyi–Levin–Valadier property introduced by Li, Nahak, and Singer. Applications are given in the ...
We consider the class of quadratically-constrained quadratic-programming methods in the framework extended from optimization to more general variational problems. Previously, in the optimization case, Anitescu (SIAM J. Optim. 12, 949–978, 2002) showed superlinear convergence of the primal sequence under the Mangasarian-Fromovitz constraint qualification and the quadratic growth condition. Quadr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید