نتایج جستجو برای: consensus clustering
تعداد نتایج: 183089 فیلتر نتایج به سال:
Abstract Dealing with relational learning generally relies on tools modeling data. An undirected graph can represent these data vertices depicting entities and edges describing the relationships between entities. These be well represented by multiple graphs over same set of arising from different catching heterogeneous relations. The those networks are often structured in unknown clusters varyi...
Clustering is the process of partitioning a dataset into groups based on the similarity between the instances. Many clustering algorithms were proposed, but none of them proved to provide good quality partition in all situations. Consensus clustering aims to enhance the clustering process by combining different partitions obtained from different algorithms to yield a better quality consensus so...
Consensus clustering involves combining multiple clusterings of the same set of objects to achieve a single clustering that will, hopefully, provide a better picture of the groupings that are present in a dataset. This Letter reports the use of consensus clustering methods on sets of chemical compounds represented by 2D fingerprints. Experiments with DUD, IDAlert, MDDR and MUV data suggests tha...
UNLABELLED Unsupervised class discovery is a highly useful technique in cancer research, where intrinsic groups sharing biological characteristics may exist but are unknown. The consensus clustering (CC) method provides quantitative and visual stability evidence for estimating the number of unsupervised classes in a dataset. ConsensusClusterPlus implements the CC method in R and extends it with...
Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selec...
Consensus Clustering [1] is a method that provides quantitative evidence for determining the number and membership of possible clusters within a dataset, such as microarray gene expression. This method has gained popularity in cancer genomics, where new molecular subclasses of disease have been discovered [3, 4]. The Consensus Clustering method involves subsampling from a set of items, such as ...
Clustering ensembles have emerged as a powerful method for improving both the robustness and the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial or statistical perspectives. We offer a probabilistic model of consensus using a finite mixture of multin...
MOTIVATION In biomedical research a growing number of platforms and technologies are used to measure diverse but related information, and the task of clustering a set of objects based on multiple sources of data arises in several applications. Most current approaches to multisource clustering either independently determine a separate clustering for each data source or determine a single 'joint'...
Although consistency is a minimum requirement of any estimator, little is known about consistency of the mean partition approach in consensus clustering. This contribution studies the asymptotic behavior of mean partitions. We show that under normal assumptions, the mean partition approach is consistent and asymptotic normal. To derive both results, we represent partitions as points of some geo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید