Motivated by Schur-concavity, we introduce the notion of G-concavity where G is a closed subgroup of the orthogonal group O(V ) on a finite dimensional real inner product space V . The triple (V,G, F ) is an Eaton triple if F ⊂ V is a nonempty closed convex cone such that (A1) Gx ∩ F is nonempty for each x ∈ V . (A2) maxg∈G(x, gy) = (x, gy) for all x, y ∈ F . If W := spanF and H := {g|W : g ∈ G...