نتایج جستجو برای: cocoherent ring
تعداد نتایج: 122997 فیلتر نتایج به سال:
we introduce center-like subsets z*(r,f), z**(r,f) and z1(r,f), where r is a ring and f is a map from r to r. for f a derivation or a non-identity epimorphism and r a suitably-chosen prime or semiprime ring, we prove that these sets coincide with the center of r.
for an arbitrary ring $r$, the zero-divisor graph of $r$, denoted by $gamma (r)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $r$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. it is well-known that for any commutative ring $r$, $gamma (r) cong gamma (t(r))$ where $t(r)$ is the (total) quotient ring of $r$. in this...
let r be a prime ring with extended centroid c, h a generalized derivation of r and n ⩾ 1 a xed integer. in this paper we study the situations: (1) if (h(xy))n = (h(x))n(h(y))n for all x; y 2 r; (2) obtain some related result in case r is a noncommutative banach algebra and h is continuous or spectrally bounded.
a ring $r$ is a strongly clean ring if every element in $r$ is the sum of an idempotent and a unit that commutate. we construct some classes of strongly clean rings which have stable range one. it is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
in this paper we define a new type of rings ”almost powerhermitian rings” (a generalization of almost hermitian rings) and establish several sufficient conditions over a ring r such that, every regular matrix admits a diagonal power-reduction.
the zero-divisor graph of a commutative ring r with respect to nilpotent elements is a simple undirected graph $gamma_n^*(r)$ with vertex set z_n(r)*, and two vertices x and y are adjacent if and only if xy is nilpotent and xy is nonzero, where z_n(r)={x in r: xy is nilpotent, for some y in r^*}. in this paper, we investigate the basic properties of $gamma_n^*(r)$. we discuss when it will be eu...
use of the double ring infiltrometer to measure soil water infiltration in center pivot irrigation systems isn’t an accurate approach because the real conditions of infiltration under center pivot sprinklers is different from what happens in the double ring. in this study the infiltration parameters were evaluated in real conditions of a center pivot system. for this purpose a single ring with ...
let $r$ be a ring with involution $*$. an additive mapping $t:rto r$ is called a left(respectively right) centralizer if $t(xy)=t(x)y$ (respectively $t(xy)=xt(y)$) for all $x,yin r$. the purpose of this paper is to examine the commutativity of prime rings with involution satisfying certain identities involving left centralizers.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید