نتایج جستجو برای: classifier ensemble
تعداد نتایج: 84271 فیلتر نتایج به سال:
The Ensemble of Classifiers (EoC) has been shown to be effective in improving the performance of single classifiers by combining their outputs, and one of the most important properties involved in the selection of the best EoC from a pool of classifiers is considered to be classifier diversity. In general, classifier diversity does not occur randomly, but is generated systematically by various ...
The Ensemble of Classifiers (EoC) has been shown to be effective in improving the performance of single classifiers by combining their outputs, and one of the most important properties involved in the selection of the best EoC from a pool of classifiers is considered to be classifier diversity. In general, classifier diversity does not occur randomly, but is generated systematically by various ...
In named entity recognition (NER) for biomedical literature, approaches based on combined classifiers have demonstrated great performance improvement compared to a single (best) classifier. This is mainly owed to sufficient level of diversity exhibited among classifiers, which is a selective property of classifier set. Given a large number of classifiers, how to select different classifiers to ...
This paper proposes an innovative combinational algorithm to improve the performance in multiclass classification domains. Because the more accurate classifier the better performance of classification, the researchers in computer communities have been tended to improve the accuracies of classifiers. Although obtaining the more accurate classifier is often aimed, there is an alternative option t...
Multi-layer perceptrons (MLP) make powerful classifiers that may provide superior performance compared with other classifiers, but are often criticized for the number of free parameters. Most commonly, parameters are set with the help of either a validation set or crossvalidation techniques, but there is no guarantee that a pseudo-test set is representative. Further difficulties with MLPs inclu...
The problem of training classifiers from limited data is one that particularly affects large-scale and social applications, and as a result, although carefully trained machine learning forms the backbone of many current techniques in research, it sees dramatically fewer applications for end-users. Recently we demonstrated a technique for selecting or recommending a single good classifier from a...
The concept of ensemble learning offers a promising avenue in learning from data streams under complex environments because it addresses the bias and variance dilemma better than its single model counterpart and features a reconfigurable structure, which is well suited to the given context. While various extensions of ensemble learning for mining non-stationary data streams can be found in the ...
Improving Classification Accuracy Using Ensemble Learning Technique (Using Different Decision Trees)
Using ensemble methods is one of the general strategies to improve the accuracy of classifier and predictor. Bagging is one of the suitable ensemble learning methods. Ensemble learning is a simple, useful and effective metaclassification methodology that combines the predictions from multiple base classifiers (or learners). In this paper we show a comparative study of different classifiers (Dec...
The aim of this paper is to propose an application of mutual information-based ensemble methods to the analysis and classification of heart beats associated with different types of Arrhythmia. Models of multilayer perceptrons, support vector machines, and radial basis function neural networks were trained and tested using the MIT-BIH arrhythmia database. This research brings a focus to an ensem...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید