نتایج جستجو برای: cicardian rhythms
تعداد نتایج: 16157 فیلتر نتایج به سال:
Circadian clocks are responsible for daily rhythms in a wide array of processes, including gastrointestinal (GI) function. These are vital for normal digestive rhythms and overall health. Previous studies demonstrated circadian clocks within the cells of GI tissue. The present study examines the roles played by the suprachiasmatic nuclei (SCN), master circadian pacemaker for overt circadian rhy...
Abstract In this study, we consider users’ online communication rhythms (online social rhythms) as coupled oscillators in a complex network. Users’ may be entrained onto those of their friends, and macro-scale pattern such can emerge. We investigated the entrainment long-range correlations using an avatar dataset. indicated to emerge if strength new connection reaches threshold. This spread via...
Circadian rhythms modulate the biology of many human tissues, including brain tissues, and are driven by a near 24-hour transcriptional feedback loop. These rhythms are paralleled by 24-hour rhythms of large portions of the transcriptome. The role of dynamic DNA methylation in influencing these rhythms is uncertain. While recent work in Neurospora suggests that dynamic site-specific circadian r...
OF THESIS CENTRAL AND PERIPHERAL REGULATION OF CIRCADIAN GASTROINTESTINAL RHYTHMS Circadian clocks are responsible for daily rhythms in gastrointestinal function which are vital for normal digestive rhythms and health. The present study examines the roles of the circadian pacemaker, the suprachiasmatic nuclei (SCN), and the sympathetic nervous system in regulation of circadian gastrointestinal ...
Biological rhythms are thought to have evolved to enable organisms to organize their activities according to the earth's predictable cycles, but quantifying the fitness advantages of rhythms is challenging and data revealing their costs and benefits are scarce. More difficult still is explaining why parasites that live exclusively within the bodies of other organisms have biological rhythms. Rh...
N-Phthaloyl GABA was administrated daily (50 mg/Kg body weight-i.p) to Wistar rats for 21 days and circadian rhythms of thiobarbituric acid reactive substances (TBARS) and antioxidants such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were studied under constant light (LL) conditions. Delayed acrophase of TBARS and advanced acrophase of antioxidants (GSH, CAT and ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید