نتایج جستجو برای: cardiac progenitor cells
تعداد نتایج: 1638984 فیلتر نتایج به سال:
Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed "side population" (SP) progenitor cells, identified by their uni...
Over the past decade, extensive work in animal models and humans has identified the presence of adult cardiac progenitor cells, capable of cardiomyogenic differentiation and likely contributors to cardiomyocyte turnover during normal development and disease. Among cardiac progenitor cells, there is a distinct subpopulation, termed “side population” (SP) progenitor cells, identified by their uni...
The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (c...
Rationale: Recent work in animal models and humans has demonstrated the presence of organ-specific progenitor cells required for the regenerative capacity of the adult heart. In response to tissue injury, progenitor cells differentiate into specialized cells, while their numbers are maintained through mechanisms of self-renewal. The molecular cues that dictate the self-renewal of adult progenit...
cardiovascular disease remains the leading cause of morbidity and mortality in the united states and europe. in recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. a stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
BACKGROUND Increasing evidence, derived mainly from animal models, supports the existence of endogenous cardiac renewal and repair mechanisms in adult mammalian hearts that could contribute to normal homeostasis and the responses to pathological insults. METHODS AND RESULTS Translating these results, we isolated small c-kit+ cells from 36 of 37 human hearts using primary cell isolation techni...
RATIONALE After cardiac injury, cardiac progenitor cells are acutely reduced and are replenished in part by regulated self-renewal and proliferation, which occurs through symmetric and asymmetric cellular division. Understanding the molecular cues controlling progenitor cell self-renewal and lineage commitment is critical for harnessing these cells for therapeutic regeneration. We previously ha...
The discovery of stem and progenitor cells in the adult mammalian heart has added a vital dimension to the field of cardiac regeneration. Cardiac-resident stem cells are likely sequestered as reserve cells within myocardial niches during the course of embryonic cardiogenesis, although they may also be recruited from external sources, such as bone marrow. As we begin to understand the nature of ...
Recently various kinds of cardiac stem/progenitor cells have been identified and suggested to be involved in cardiac repair and regeneration in injured myocardium. In this review, we focus on the roles of JAK-STAT signaling in cardiac stem/progenitor cells in cardiomyogenesis. JAK-STAT signaling plays important roles in the differentiation of stem cells into cardiac lineage cells. The activatio...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید