نتایج جستجو برای: c جبر

تعداد نتایج: 1058512  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1394

از آنجایی که مفهوم توازی با الهام از مفهوم تعامد بیرخوف-جیمز بیان شده است لذا سعی داریم در ابتدا به تعریف مفهوم تعامد بیرخوف-جیمز دو بردار در فضای نرمدار بپردازیم و سپس این -مدول های هیلبرت تعمیم دهیم. c -جبر و c ،b(h) مفهوم را به ساختارهایی همچون جبر سپس در توسعه مفهوم توازی، مفهوم توازی تقریبی را در فضای نرمدار معرفی می کنیم و چندین را بیان می کنیم. همچنین با استفاده b(h) مشخصه از توازی د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده ریاضی 1393

در این پایان نامه نتایجی در مورد اشتقاق ‏و‏ تعمیم های آن روی c*‎‏- مدول های هیلبرت و فضاهای عملگری وابسته به آن داده می شود. سه مشخص سازی برای ابر اشتقاق ها برحسب عناصری که حاصلضربشان نقطه جداکننده یا فشرده یا صفر است, داده می شود. ‏مشخص سازی دیگری ‏برای ابر اشتقاق ها به کمک عناصر تصویر ‏یک ‏جبر فون ‏نیومن نیز ارایه می شود. یک مشخص سازی از ابر اشتقاق های سه تایی روی جبرهای سه تایی ‏ارایه شده و...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1391

قضیه باناخ - استون در حالت ناجابجایی می گوید « فرض کنیم x و y دو فضای فشرده و هاسدورف باشند اگریک یکریختی طولپا از(c(x به (c(y وجود داشته باشد آنگاه x و y یکسانریخت هستند».در این پایان نامه، قضیه باناخ – استون را به حالت ناجابجایی گسترش داده، به این مفهوم که *c-جبر لیمینال a توپولوژی فضای ایده آل اولیه ی آن را تعیین می کند.در این پایان نامه، قضیه باناخ - استون را به حالت غیرجابجایی گسترش داده، ...

پایان نامه :دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1388

یک k- جبر a، با یک نگاشت k - دوخطی a ? a { , } : a ×، یک جبر پواسون نامیده می شود اگر: (1) به ازای هر a,b ? a ، b , a} {a , b}= - { (2) به ازای هر a,b,c ? a ، {a , {b , c}} + {b , {c , a}} + {c , {a , b}} = 0 (3) به ازای هر a,b,c ? a ، {ab , c} = a{b , c} + b{a , c} . فرض کنید a یک جبر پواسون با کروش? پواسون a {. , .}باشد و فرض کنید ? و ? نگاشت های خطی از a به داخل a باشند. یک شرط لازم و ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1377

اگر xi یک فضای هاوسدورف موضعا فشرده و qi: xi--->xi یک همسانریختی باشد i1,2، آنگاه (x1,q1) و (x2,q2) را مزدوج گویند اگر همسانریختی : x2--->x1 موجود باشد که oq2q1o . فرض کنید qz × c(x) ضرب خارجی - c* از (x,q) باشد. جبر نیم ضرب خارجی مربوطبه (x,q) یک زیر جبر بسته از جبر - c*، qz × c(x) است و با qz+ × c(x) نشان داده می شود. این پایان نامهشامل سه فصل است . در فصل اول تعاریف اساسی و قضایا و همچنین مف...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1387

یکی از تکنیکهای استاندارد مطالعه یک عملگر روی یک فضای هیلبرت ، شناسایی آن به عنوان تحدید یک عملگر ساده تر روی یک فضای هیلبرت بزرگتر است. این تکنیک که ماهیتی تقریباً هندسی دارد، به ارتقاء موسوم است. نگاشتهای کاملاً مثبت در نظریه ارتقاء نقش مهمی ایفا می کنند. قضایای نمایش اشتاین اسپرینگ که ارتقاء نگاشتهای کاملاً مثبت به -همومورفیسم ها روی جبرهای بزرگتر را ثابت می نمایند بخشی از این پایان نامه را تشک...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران 1389

کاپلانسکی در سال 1970 مساله زیر را مطرح کرد: فرض کنید a و b جبرهای باناخ مختلط نیم ساده باشند و t یک نگاشت خطی یکدار حافظ طیف از a بروی b باشد. آیا t یک همریختی جردن است؟ در این پایان نامه ثابت می کنیم که مساله کاپلانسکی برای کلاس خاصی از جبرهای باناخ جواب مثبت دارد. ثابت می کنیم که هر نگاشت خطی یکدار حافظ ایده الهای چپ ماکزیمال از یک c-ستار جبر بروی c-ستار جبر یکدار بطور محض نامتناهی یک همریخ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1388

در این مقاله نظریه ی kبرای c^*- جبر c^*(v,f) مربوط به به c^?- برگ بندی های(v,f) در ساده ترین حالت نا بدیهی یعنی بعد دو مطالعه می شود.چون حالت برگ بندی کرونکر توسط پیمسر و ویکو لسکو بررسی شد، مساله ی باقی مانده مربوط به برگ بندی ریب می باشد. د ر این حالت c^*- جبر ساده ی k_*c^*(v,f) با استفاده از دنباله ی مایر ویتوریس و دنباله ی دقیق شش عبارتی محاسبه می شود. نتایج بدست آمده c^*- جبر برگ بندی ریب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1379

فرض کنید k یک فضای باناخ باشد و b یک جبر c یکدار باشد و l(k) b : یک انژکتیو همومورفیسم یکدار باشد. همچنین فرض کنید که یک تابع r k × k: وجود داشته باشد بطوریکه برای هر k k2 ، k1 ، k و برای هر b b ، الف ) k (k ، k ) ب ) k (k2 ، k1 ) ج ) (k2 ،k1 ) ) k2 ، k1 ) . سپس برای همه b b ها، اسپکتروم b در b معادل با اسپکتروم بعنوان اپراتور خطی کراندار روی k است . حالتهای خاصی از این نتایج عبارتند از : 1 - ا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم انسانی 1389

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید