نتایج جستجو برای: bootstrapped quantile regression
تعداد نتایج: 320364 فیلتر نتایج به سال:
Using a rich data set of transaction-level buy and sell orders from the major digital currency exchange Coinbase, we formulate measure for investor sentiment shed new evidence on sentiment-return relation bitcoin. bootstrapped quantile regression procedure show significant robust between rising price increases, vice versa, across distribution bitcoin changes. This is shown to be when controllin...
Interrupted Time Series (ITS) analysis represents a powerful quasi-experime-ntal design in which a discontinuity is enforced at a specific intervention point in a time series, and separate regression functions are fitted before and after the intervention point. Segmented linear/quantile regression can be used in ITS designs to isolate intervention effects by estimating the sudden/level change (...
Quantile regresson extends classical least squares methods of estimating conditional mean functions by offering a variety of methods for estimating conditional quantile functions, thereby enabling the researcher to explore heterogeneous covariate effects. The course will offer a comprehensive introduction to quantile regression methods and survey some recent developments. The primary reference ...
Quantile regression as an alternative to conditional mean regression (i.e., least square regression) is widely used in many areas. It can be used to study the covariate effects on the entire response distribution by fitting quantile regression models at multiple different quantiles or even fitting the entire regression quantile process. However, estimating the regression quantile process is inh...
Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable...
This study proposes a new use of goal programming for empirically estimating a regression quantile hyperplane. The approach can yield regression quantile estimates that are less sensitive to not only non-Gaussian error distribut.ions but also a small sample size t.han conventional regression quantile methods. The performance of regression quantile estimates is compared with least absolute value...
Quantile regression methods are emerging as a popular technique in econometrics and biometrics for exploring the distribution of duration data. This paper discusses quantile regression for duration analysis allowing for a flexible specification of the functional relationship and of the error distribution. Censored quantile regression address the issue of right censoring of the response variable...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید