نتایج جستجو برای: augmented lagrangian methods
تعداد نتایج: 1935613 فیلتر نتایج به سال:
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
In constrained optimisation, the augmented Lagrangian method is considered as one of the most effective and efficient methods. This paper studies the behaviour of augmented Lagrangian function (ALF) in the solution space and then proposes an improved augmented Lagrangian method. We have shown that our proposed method can overcome some of the drawbacks of the conventional augmented Lagrangian me...
We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods kno...
We propose an augmented Lagrangian algorithm for solving large-scale equality constrained optimization problems. The novel feature of the algorithm is an adaptive update for the penalty parameter motivated by recently proposed techniques for exact penalty methods. This adaptive updating scheme greatly improves the overall performance of the algorithm without sacrificing the strengths of the cor...
We present and analyze an interior-exterior augmented Lagrangian method for solving constrained optimization problems with both inequality and equality constraints. This method, the modified barrier—augmented Lagrangian (MBAL) method, is a combination of the modified barrier and the augmented Lagrangian methods. It is based on the MBAL function, which treats inequality constraints with a modifi...
Regularized and stabilized sequential quadratic programming methods are two classes of sequential quadratic programming (SQP) methods designed to resolve the numerical and theoretical difficulties associated with ill-posed or degenerate nonlinear optimization problems. Recently, a regularized SQP method has been proposed that provides a strong connection between augmented Lagrangian methods and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید