نتایج جستجو برای: augmented eccentric connectivity index
تعداد نتایج: 516957 فیلتر نتایج به سال:
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
the eccentricity connectivity index of a molecular graph g is defined as (g) = av(g)deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to othervertices of g and deg(a) is degree of vertex a. here, we compute this topological index forsome infinite classes of dendrimer graphs.
let g be a connected simple (molecular) graph. the distance d(u, v) between two vertices u and v of g is equal to the length of a shortest path that connects u and v. in this paper we compute some distance based topological indices of h-phenylenic nanotorus. at first we obtain an exactformula for the wiener index. as application we calculate the schultz index and modified schultz index of this ...
if $g$ is a connected graph with vertex set $v$, then the eccentric connectivity index of $g$, $xi^c(g)$, is defined as $sum_{vin v(g)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. in this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.
We derived explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square-octagonal TUC4C8(R) lattices with open and closed ends. New compression factors for both indices are also computed in the limit N-->∞.
let g be a graph. in this paper, we study the eccentric connectivity index, the new version ofthe second zagreb index and the forth geometric–arithmetic index.. the basic properties ofthese novel graph descriptors and some inequalities for them are established.
The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.
Inequalities provide a way to study topological indices relatively. There are two major classes of topological indices: degree-based and distance-based indices. In this paper we provide a relative study of these classes and derive inequalities between degree-based indices such as Randić connectivity, GA, ABC, and harmonic indices and distance-based indices such as eccentric connectivity, connec...
The eccentric connectivity index ξ is a novel distance–based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξ(G) = ∑ v∈V (G) deg(v) · ε(v) , where deg(v) and ε(v) denote the vertex degree and eccentricity of v , respectively. We survey some mathematical properties of this index and furthermore support ...
the second multiplicative zagreb coindex of a simple graph $g$ is defined as: $${overline{pi{}}}_2left(gright)=prod_{uvnotin{}e(g)}d_gleft(uright)d_gleft(vright),$$ where $d_gleft(uright)$ denotes the degree of the vertex $u$ of $g$. in this paper, we compare $overline{{pi}}_2$-index with some well-known graph invariants such as the wiener index, schultz index, eccentric co...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید