نتایج جستجو برای: asymptotic wiener index
تعداد نتایج: 465659 فیلتر نتایج به سال:
in theoretical chemistry, molecular structure descriptors are used to compute properties of chemical compounds. among them wiener, szeged and detour indices play significant roles in anticipating chemical phenomena. in the present paper, we study these topological indices with respect to their difference number.
fullerenes are closed−cage carbon molecules formed by 12 pentagonal and n/2 – 10hexagonal faces, where n is the number of carbon atoms. patrick fowler in his lecture inmcc 2009 asked about the wiener index of fullerenes in general. in this paper werespond partially to this question for an infinite class of fullerenes with exactly 10ncarbon atoms. our method is general and can be applied to full...
let $g$ be a simple connected graph. the edge-wiener index $w_e(g)$ is the sum of all distances between edges in $g$, whereas the hyper edge-wiener index $ww_e(g)$ is defined as {footnotesize $w{w_e}(g) = {frac{1}{2}}{w_e}(g) + {frac{1}{2}} {w_e^{2}}(g)$}, where {footnotesize $ {w_e^{2}}(g)=sumlimits_{left{ {f,g} right}subseteq e(g)} {d_e^2(f,g)}$}. in this paper, we present explicit formula fo...
In this paper the Wiener and hyper Wiener index of two kinds of dendrimer graphs are determined. Using the Wiener index formula, the Szeged, Schultz, PI and Gutman indices of these graphs are also determined.
In the language of mathematical chemistry, Fibonacci cubes can be defined as the resonance graphs of fibonacenes. Lucas cubes form a symmetrization of Fibonacci cubes and appear as resonance graphs of cyclic polyphenantrenes. In this paper it is proved that the Wiener index of Fibonacci cubes can be written as the sum of products of four Fibonacci numbers which in turn yields a closed formula f...
let $g=(v(g),e(g))$ be a simple connected graph with vertex set $v(g)$ and edge set $e(g)$. the (first) edge-hyper wiener index of the graph $g$ is defined as: $$ww_{e}(g)=sum_{{f,g}subseteq e(g)}(d_{e}(f,g|g)+d_{e}^{2}(f,g|g))=frac{1}{2}sum_{fin e(g)}(d_{e}(f|g)+d^{2}_{e}(f|g)),$$ where $d_{e}(f,g|g)$ denotes the distance between the edges $f=xy$ and $g=uv$ in $e(g)$ and $d_{e}(f|g)=s...
mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. in theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. the wiener polarity index ...
In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. We introduce a generalizedWiener polarity indexWk(G) as the number of unordered pairs of vertices {u, v} of G such that the shortest distance d(u, v) between u and v is k. For k = 3, we get standard Wiener polarity index. ...
hansen et. al., using the autographix software package, conjectured that the szeged index $sz(g)$ and the wiener index $w(g)$ of a connected bipartite graph $g$ with $n geq 4$ vertices and $m geq n$ edges, obeys the relation $sz(g)-w(g) geq 4n-8$. moreover, this bound would be the best possible. this paper offers a proof to this conjecture.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید