نتایج جستجو برای: arima فصلی
تعداد نتایج: 7771 فیلتر نتایج به سال:
Measurements of high-speed network traffic have shown that traffic data exhibits a high degree of self-similarity. Traditional traffic models such as AR and ARMA are not able to capture this long-range-dependence making them ineffective for the traffic prediction task. In this paper, we apply the fractional ARIMA (F-ARIMA) model to predict one-step-ahead traffic value at different time scales. ...
گوشت یکی از مهم ترین منابع تأمین پروتئین است که برای سرمایه گذاری و برنامه ریزی در جهت تولید آن نیاز به پیش بینی تقاضای مصرف گوشت در آینده می باشد. لذا در این مقاله تلاش گردید تا با استفاده از داده های فصلی برای دوره ی 1386.4-1367.1 عملکرد دو الگوی arima و arimax به منظور پیش بینی تقاضای سرانه گوشت قرمز مورد مقایسه قرار گیرد. نتایج نشان داد که پیش بینی حاصل از فرآیند arimax دقیق تر می باشد. لذا...
This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA mode...
OBJECTIVE Emergency department (ED) overcrowding is acknowledged as an increasingly important issue worldwide. Hospital managers are increasingly paying attention to ED crowding in order to provide higher quality medical services to patients. One of the crucial elements for a good management strategy is demand forecasting. Our study sought to construct an adequate model and to forecast monthly ...
This paper presents a comprehensive study of ANFIS+ARIMA+IT2FLS models for forecasting the weather of Raipur, Chhattisgarh, India. For developing the models, ten year data (2000-2009) comprising daily average temperature (dry-wet), air pressure, and wind-speed etc. have been used. Adaptive Network Based Fuzzy Inference System (ANFIS) and Auto Regressive Moving Average (ARIMA) models based on In...
Forecasting accuracy is one of the most favorable critical issues in Autoregressive Integrated Moving Average (ARIMA) models. The study compares the application of two forecasting methods on the amount of Taiwan export, the Fuzzy time series method and ARIMA method. Model discussed for the ARIMA method and Fuzzy time series method include the Sturges rules. When the sample period is extend in o...
خشکسالی پدیدهای است که برای پیشبینی آن نمیتوان از مدل مشخصی استفاده کرد. بر این اساس، محققان تلاش میکنند با استفاده از مدلهای پیشرفته دقت پیشبینیها را افزایش دهند. در این زمینه، مدلهای استوکاستیک خطی، شبکة عصبی مصنوعی، و مدلهای هیبرید میتوانند در دقت پیشبینی مفید باشند. تحقیق حاضر به بررسی کارایی مدلهای اتورگرسیو میانگین متحرک تجمعی (ARIMA)، شبکة عصبی مصنوعی مستقیم (DMSNN)، شبکة عص...
BACKGROUND A prediction model for tuberculosis incidence is needed in China which may be used as a decision-supportive tool for planning health interventions and allocating health resources. METHODS The autoregressive integrated moving average (ARIMA) model was first constructed with the data of tuberculosis report rate in Hubei Province from Jan 2004 to Dec 2011.The data from Jan 2012 to Jun...
Natural calamities (e.g., hurricane, excessive ice-fall) may often impede the inventory replenishment during the peak sale season. Due to the extreme situations, sales may not occur and demand may not be recorded. This study focuses on forecasting of intermittent seasonal demand by taking random demand with a proportion of zero values in the peak sale season. Demand pattern for a regular time i...
In this study we develop the hybrid models for forecasting in agricultural production planning. Real data of Thailand’s orchid export and Thailand’s pork product are used to validate candidate models. Autoregressive Integrate Moving Average (ARIMA) is also selected as a benchmarking to compare other developed models. The main concept of building the models is to combine different forecasting te...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید