نتایج جستجو برای: archimedean random space
تعداد نتایج: 760215 فیلتر نتایج به سال:
the goal of this paper is to investigate the solutionand stability in random normed spaces, in non--archimedean spacesand also in $p$--banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
In order to study copula families that have different tail patterns and tail asymmetry than multivariate Gaussian and t copulas, we introduce the concepts of tail order and tail order functions. These provide an integrated way to study both tail dependence and intermediate tail dependence. Some fundamental properties of tail order and tail order functions are obtained. For the multivariate Arch...
The discrete Lotka–Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with non-Archimedean valuations and the space given by taking the ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations given in my previous paper (Matsutani S 2001 Int. J. Math. Math. Sci.). In this paper, using the natura...
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
This paper presents a general tail approximation method for evaluating the Valueat-Risk of any norm of random vectors with multivariate regularly varying distributions. The main result is derived using the relation between the intensity measure of multivariate regular variation and tail dependence function of the underlying copula, and in particular extends the tail approximation discussed in E...
Discrete Lotka-Volterra equation over p-adic space was constructed since p-adic space is a prototype of spaces with the non-Archimedean valuations and the space given by taking ultra-discrete limit studied in soliton theory should be regarded as a space with the non-Archimedean valuations in the previous report (solv-int/9906011). In this article, using the natural projection from p-adic intege...
A notion of completeness and completion suitable for use in the absence of countable choice is developed. This encompasses the construction of the real numbers as well as the completion of an arbitrary metric space. The real numbers are characterized as a complete archimedean Heyting eld, a terminal object in the category of archimedean Heyting elds.
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید