نتایج جستجو برای: archimedean normed spaces

تعداد نتایج: 133195  

2010
SALEH SHAKERI REZA SAADATI CHOONKIL PARK

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) in non-Archimedean L-fuzzy normed spaces.

The aim of this paper is to introduce $n$-variables mappings which are cubic in each variable and to apply a fixed point theorem for the Hyers-Ulam stability of such mapping in non-Archimedean normed spaces. Moreover, a few corollaries corresponding to some known stability and hyperstability outcomes are presented.

2017
M.H.M. Rashid

The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type (R) in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type (R), also, we give an applications by using the main theorems.

Journal: :Indagationes Mathematicae (Proceedings) 1989

Journal: :Bulletin of the Korean Mathematical Society 2009

2011
Ali Ebadian Meysam Bavand Savadkouhi Madjid Eshaghi Gordji

In this paper, we prove the generalized Hyres–Ulam–Rassias stability of the mixed type cubic and quartic functional equation f (x + 2y) + f (x − 2y) = 4(f (x + y) + f (x − y)) − 24f (y) − 6f (x) + 3f (2y) in non-Archimedean ℓ-fuzzy normed spaces.

2013
YANG-HI LEE SOON-MO JUNG

In this paper, we prove the stability of the functional equation ∑ 1 i, j n,i = j ( f (xi + x j)+ f (xi − x j) ) = (n−1) n ∑ i=1 ( 3 f (xi)+ f (−xi) ) in non-Archimedean normed spaces. Mathematics subject classification (2010): 39B82, 46S10, 39B52.

2015
Sun Sook Jin Yang-Hi Lee

In this paper, we investigate the generalized Hyers–Ulam stability for the functional equation f(ax+y)+af(y−x)− a(a+ 1) 2 f(x)− a(a+ 1) 2 f(−x)− (a+1)f(y) = 0 in non-Archimedean normed spaces. Mathematics Subject Classification: 39B52, 39B82

2012
K. Ravi

In this paper, we obtain the general solution and investigate the Hyers-Ulam-Rassias stability of the functional equation f(ax− y)± af(x± y) = (a± 1)[af(x)± f(y)] in non-Archimedean -fuzzy normed spaces. Mathematics Subject Classification: 39B55, 39B52, 39B82

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید