نتایج جستجو برای: archimedean

تعداد نتایج: 2370  

2014
Syed Abdul Mohiuddine Abdullah Alotaibi Mustafa Obaid Seenith Sivasundaram

We define and study the concept of non-Archimedean intuitionistic fuzzy normed space by using the idea of t-norm and t-conorm. Furthermore, by using the non-Archimedean intuitionistic fuzzy normed space, we investigate the stability of various functional equations. That is, we determine some stability results concerning the Cauchy, Jensen and its Pexiderized functional equations in the framewor...

2015
J. STEFFEN

We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height into an archimedean and a non-archimedean term. Our main contribution is an algorithm for the computation of the non-archimedean term that require...

2007
Andrew Schumann

In this paper I propose the non-Archimedean multiple-validity. Further, I build an infinite-order predicate logical language in that predicates of various order are considered as fuzzy relations. Such a language can have non-Archimedean valued semantics. For instance, infinite-order predicates can have an interpretation in the set [0, 1] of hyperreal (hyperrational) numbers. Notice that there e...

1997
P. EHRLICH

A Dedekind cut of an ordered abelian group G is a pair (X, Y) of nonempty subsets of G where Y=G−X and every member of X precedes every member of Y. A Dedekind cut (X, Y) is said to be continuous if X has a greatest member or Y has a least member, but not both; if every Dedekind cut of G is a continuous cut, G is said to be (Dedekind) continuous. The ordered abelian group R of real numbers is, ...

2014
HIROSHI OKUMURA

For a point T and a circle δ, if two congruent circles of radius r touching at T also touch δ at points different from T , we say T generates circles of radius r with δ, and the two circles are said to be generated by T with δ. If the generated circles are Archimedean, we say T generates Archimedean circles with δ. Frank Power seems to be the earliest discoverer of this kind Archimedean circles...

Journal: :Int. J. Math. Mathematical Sciences 2005
S. V. Lüdkovsky

A non-Archimedean antiderivational line analog of the Cauchy-type line integration is defined and investigated over local fields. Classes of non-Archimedean holomorphic functions are defined and studied. Residues of functions are studied; Laurent series representations are described. Moreover, non-Archimedean antiderivational analogs of integral representations of functions and differential for...

Journal: :The American Mathematical Monthly 2014
Pete L. Clark Niels J. Diepeveen

We explore the distinction between convergence and absolute convergence of series in both Archimedean and non-Archimedean ordered fields and find that the relationship between them is closely connected to sequential (Cauchy) completeness.

2002
ERICH PETER KLEMENT RADKO MESIAR Erich Peter Klement Radko Mesiar

The Archimedean components of triangular norms (which turn the closed unit interval into an abelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordina...

Journal: :international journal of nonlinear analysis and applications 0
choonkil park research nstitute for natural sciences, hanyang university seoul 04763, korea sang og kim department of mathematics hallym university chuncheon 24252 korea

in this paper, we solve the quadratic $alpha$ -functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f( alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-archimedean number with $alpha^{-2}neq 3$. using the fixed point method and the direct method, we prove the hyers-ulam stability of the quadratic $alpha$-functional equation (0.1) in non-archimedean banach spaces.

2013
HIROSHI OKUMURA

For a point O on the segment AB in the plane, the area surrounded by the three semicircles with diameters AO, BO and AB erected on the same side is called an arbelos. It has lots of unexpected but interesting properties (for an extensive reference see [1]). The radical axis of the inner semicircles divides the arbelos into two curvilinear triangles with congruent incircles called the twin circl...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید