نتایج جستجو برای: archimedean
تعداد نتایج: 2370 فیلتر نتایج به سال:
We define and study the concept of non-Archimedean intuitionistic fuzzy normed space by using the idea of t-norm and t-conorm. Furthermore, by using the non-Archimedean intuitionistic fuzzy normed space, we investigate the stability of various functional equations. That is, we determine some stability results concerning the Cauchy, Jensen and its Pexiderized functional equations in the framewor...
We introduce an algorithm that can be used to compute the canonical height of a point on an elliptic curve over the rationals in quasi-linear time. As in most previous algorithms, we decompose the difference between the canonical and the naive height into an archimedean and a non-archimedean term. Our main contribution is an algorithm for the computation of the non-archimedean term that require...
In this paper I propose the non-Archimedean multiple-validity. Further, I build an infinite-order predicate logical language in that predicates of various order are considered as fuzzy relations. Such a language can have non-Archimedean valued semantics. For instance, infinite-order predicates can have an interpretation in the set [0, 1] of hyperreal (hyperrational) numbers. Notice that there e...
A Dedekind cut of an ordered abelian group G is a pair (X, Y) of nonempty subsets of G where Y=G−X and every member of X precedes every member of Y. A Dedekind cut (X, Y) is said to be continuous if X has a greatest member or Y has a least member, but not both; if every Dedekind cut of G is a continuous cut, G is said to be (Dedekind) continuous. The ordered abelian group R of real numbers is, ...
For a point T and a circle δ, if two congruent circles of radius r touching at T also touch δ at points different from T , we say T generates circles of radius r with δ, and the two circles are said to be generated by T with δ. If the generated circles are Archimedean, we say T generates Archimedean circles with δ. Frank Power seems to be the earliest discoverer of this kind Archimedean circles...
A non-Archimedean antiderivational line analog of the Cauchy-type line integration is defined and investigated over local fields. Classes of non-Archimedean holomorphic functions are defined and studied. Residues of functions are studied; Laurent series representations are described. Moreover, non-Archimedean antiderivational analogs of integral representations of functions and differential for...
We explore the distinction between convergence and absolute convergence of series in both Archimedean and non-Archimedean ordered fields and find that the relationship between them is closely connected to sequential (Cauchy) completeness.
The Archimedean components of triangular norms (which turn the closed unit interval into an abelian, totally ordered semigroup with neutral element 1) are studied, in particular their extension to triangular norms, and some construction methods for Archimedean components are given. The triangular norms which are uniquely determined by their Archimedean components are characterized. Using ordina...
in this paper, we solve the quadratic $alpha$-functional equations $2f(x) + 2f(y) = f(x + y) + alpha^{-2}f(alpha(x-y)); (0.1)$ where $alpha$ is a fixed non-archimedean number with $alpha^{-2}neq 3$. using the fixed point method and the direct method, we prove the hyers-ulam stability of the quadratic $alpha$-functional equation (0.1) in non-archimedean banach spaces.
For a point O on the segment AB in the plane, the area surrounded by the three semicircles with diameters AO, BO and AB erected on the same side is called an arbelos. It has lots of unexpected but interesting properties (for an extensive reference see [1]). The radical axis of the inner semicircles divides the arbelos into two curvilinear triangles with congruent incircles called the twin circl...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید