نتایج جستجو برای: arabic e text
تعداد نتایج: 1252730 فیلتر نتایج به سال:
Feature selection is essential for effective and accurate text classification systems. This paper investigates the effectiveness of six commonly used feature selection methods, Evaluation used an in-house collected Arabic text classification corpus, and classification is based on Support Vector Machine Classifier. The experimental results are presented in terms of precision, recall and Macroave...
From our three year experience of developing a large-scale corpus of annotated Arabic text, our paper will address the following: (a) review pertinent Arabic language issues as they relate to methodology choices, (b) explain our choice to use the Penn English Treebank style of guidelines, (requiring the Arabic-speaking annotators to deal with a new grammatical system) rather than doing the anno...
This paper presents a novel holistic technique for classifying and retrieving Arabic handwritten text documents. The retrieval of Arabic handwritten documents is performed in several steps. First, the Arabic handwritten document images are segmented into words, and then each word is segmented into its connected parts. Second, several features are extracted from these connected parts and then co...
Developments in Arabic information retrieval did not follow the increasing use of the Arabic Web during the last decade. Semantic indexing in a language with high inflectional morphology, such as Arabic, is not a trivial task and requires a text analysis in the original language. Excepting cross-language retrieval methods or limited studies, the main efforts, for developing semantic analysis me...
Text categorization is the process of classifying documents into a predefined set of categories based on its contents of keywords. Text classification is an extended type of text categorization where the text is further categorized into sub-categories. Many algorithms have been proposed and implemented to solve the problem of English text categorization and classification. However, few studies ...
This study focuses on Arabic text watermarking semi-verification utilizing recent counting-based secret-sharing to partially validate the ownership and correctness for all sensitive medical e-records. The benefit of this approach is its semi-trust e-records, as needed services provided, even if complete report a bit delayed full verification. Proposed work presents two approaches text-watermark...
This paper presents a new technique of high accuracy to recognize both typewritten and handwritten English and Arabic texts without thinning. After segmenting the text into lines (horizontal segmentation) and the lines into words, it separates the word into its letters. Separating a text line (row) into words and a word into letters is performed by using the region growing technique (implicit s...
The main aim of this thesis is to build adaptive language models of Arabic text that can achieve the best compression performance over existing models. Prediction by partial matching (PPM) language models has been the best performing over the other adaptive language models through the past three decades in term of compression performance. In order to get such performance for Arabic text, the ri...
We present a novel technique for Arabic morphological annotation. The technique utilizes diacritization to produce morphological annotations of quality comparable to human annotators. Although Arabic text is generally written without diacritics, diacritization is already available for large corpora of Arabic text in several genres. Furthermore, diacritization can be generated at a low cost for ...
Translation of the Holy Quran can be difficult for translators in terms of accuracy and translatability. Sometimes translators fail to render the Quranic thoughts because of the lack of language features in target languages. This results in an unfavorable interpretation. One of the challenging aspects of translating Quran is reference switching as rhetorical devices, which are widespread i...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید