نتایج جستجو برای: approximately higher ternary jordan derivation
تعداد نتایج: 1240060 فیلتر نتایج به سال:
let $mathcal m$ be a factor von neumann algebra. it is shown that every nonlinear $*$-lie higher derivation$d={phi_{n}}_{ninmathbb{n}}$ on $mathcal m$ is additive. in particular, if $mathcal m$ is infinite type $i$factor, a concrete characterization of $d$ is given.
In this paper we characterize the left Jordan derivations on Banach algebras. Also, it is shown that every bounded linear map $d:mathcal Ato mathcal M$ from a von Neumann algebra $mathcal A$ into a Banach $mathcal A-$module $mathcal M$ with property that $d(p^2)=2pd(p)$ for every projection $p$ in $mathcal A$ is a left Jordan derivation.
let $r$ be a 2-torsion free ring and $u$ be a square closed lie ideal of $r$. suppose that $alpha, beta$ are automorphisms of $r$. an additive mapping $delta: r longrightarrow r$ is said to be a jordan left $(alpha,beta)$-derivation of $r$ if $delta(x^2)=alpha(x)delta(x)+beta(x)delta(x)$ holds for all $xin r$. in this paper it is established that if $r$ admits an additive mapping $g : rlongrigh...
Let n ∈ N − {1}, and let A be a Banach algebra. An additive map D : A → A is called n-Jordan derivation if D(a) = D(a)a + aD(a)a + ...+ aD(a)a+ aD(a), for all a ∈ A. Using fixed point methods, we investigate the stability of n–Jordan derivations (n–Jordan ∗−derivations) on Banach algebras (C∗−algebras). Also we show that to each approximate ∗−Jordan derivation f in a C∗− algebra there correspon...
In this paper, we examine some questions concerned with certain “skew” properties of the range of a Jordan *-derivation. In the first part we deal with the question, for example, when the range of a Jordan *-derivation is a complex subspace. The second part of this note treats a problem in relation to the range of a generalized Jordan *-derivation.
In this paper, we prove Hyers-Ulam-Rassias stability of $C^*$-ternary algebra homomorphism for the following generalized Cauchy-Jensen equation $$eta mu fleft(frac{x+y}{eta}+zright) = f(mu x) + f(mu y) +eta f(mu z)$$ for all $mu in mathbb{S}:= { lambda in mathbb{C} : |lambda | =1}$ and for any fixed positive integer $eta geq 2$ on $C^*$-ternary algebras by using fixed poind alternat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید