نتایج جستجو برای: almost additive maps
تعداد نتایج: 369541 فیلتر نتایج به سال:
For Fr$acute{mathbf{text{e}}}$chet algebras $(A, (p_n))$ and $(B, (q_n))$, a linear map $T:Arightarrow B$ is textit{almost multiplicative} with respect to $(p_n)$ and $(q_n)$, if there exists $varepsilongeq 0$ such that $q_n(Tab - Ta Tb)leq varepsilon p_n(a) p_n(b),$ for all $n in mathbb{N}$, $a, b in A$, and it is called textit{weakly almost multiplicative} with respect to $(p_n)$ and $(q_n)$...
The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.
Let X be a compact Hausdorff space, E be a normed space, A(X,E) be a regular Banach function algebra on X , and A(X,E) be a subspace of C(X,E) . In this paper, first we introduce the notion of localness of an additive map S:A(X,E) → C(X,E) with respect to additive maps T1,...,Tn: A(X) → C(X) and then we characterize the general form of such maps for a certain class of subspaces A(X,E) of C(...
Abstract We study the Betti map of a particular (but relevant) section family Jacobians hyperelliptic curves using polynomial Pell equation $A^2-DB^2=1$ , with $A,B,D\in \mathbb {C}[t]$ and certain ramified covers $\mathbb {P}^1\to {P}^1$ arising from such having heavy constrains on their ramification. In particular, we obtain special case result André, Corvaja Zannier submersivity by studying ...
Let $R$ be a prime ring, $I$ be any nonzero ideal of $R$ and $f:Irightarrow R$ be an additivemap. Then skew-Engel condition $langle... langle langle$$f(x),x^{n_1} rangle,x^{n_2} rangle ,...,x^{n_k} rangle=0$ implies that $f (x)=0$ $forall,xin I$ provided $2neq$ char $(R)>n_1+n_2+...+n_k, $ where $n_1,n_2,...,n_k$ are natural numbers. This extends some existing results. In the end, we also gener...
the stability problem of the functional equation was conjectured by ulam and was solved by hyers in the case of additive mapping. baker et al. investigated the superstability of the functional equation from a vector space to real numbers.in this paper, we exhibit the superstability of $m$-additive maps on complete non--archimedean spaces via a fixed point method raised by diaz and margolis.
This is a survey on recent developments concerning a thermodynamic formalism for almost additive sequences of functions. While the nonadditive thermodynamic formalism applies to much more general sequences, at the present stage of the theory there are no general results concerning for example a variational principle for the topological pressure or the existence of equilibrium or Gibbs measures,...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید