A strong coloring on a cardinal $\kappa$ is function $f:[\kappa]^2\to \kappa$ such that for every $A\subseteq of full size $\kappa$, color $\gamma<\kappa$ attained by $f\upharpoonright[A]^2$. The symbol $\kappa\nrightarrow [\kappa]^2_\kappa$ asserts the existence $\kappa$. We introduce $\kappa\nrightarrow_p[\kappa]^2_\kappa$ which over partition $p:[\kappa]^2\to\theta$. $f$ $p$ if $A\in [\kappa...