نتایج جستجو برای: adjacent vertex distinguishing acyclic edge coloring

تعداد نتایج: 262365  

Journal: :Discrete Mathematics 2010
Mieczyslaw Borowiecki Anna Fiedorowicz

A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...

Journal: :J. Comb. Optim. 2010
Patrizio Angelini Fabrizio Frati

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that testing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable. Further, we show that every planar graph has a subdivision with one vertex per edge that admits an acyclic 3-colori...

Coloring graphs is one of important and frequently used topics in diverse sciences. In the majority of the articles, it is intended to find a proper bound for vertex coloring, edge coloring or total coloring in the graph. Although it is important to find a proper algorithm for graph coloring, it is hard and time-consuming too. In this paper, a new algorithm for vertex coloring, edge coloring an...

2014
Marthe Bonamy Benjamin L'eveque Alexandre Pinlou

For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...

Journal: :Discrete Mathematics & Theoretical Computer Science 2016
Marthe Bonamy Benjamin Lévêque Alexandre Pinlou

For planar graphs, we consider the problems of list edge coloring and list total coloring. Edge coloring is the problem of coloring the edges while ensuring that two edges that are adjacent receive different colors. Total coloring is the problem of coloring the edges and the vertices while ensuring that two edges that are adjacent, two vertices that are adjacent, or a vertex and an edge that ar...

Journal: :Random Struct. Algorithms 2002
Paul N. Balister

A proper edge coloring of a simple graph G is called vertex-distinguishing if no two distinct vertices are incident to the same set of colors. We prove that the minimum number of colors required for a vertex-distinguishing coloring of a random graph of order n is almost always equal to the maximum degree ∆(G) of the graph.

Journal: :East Asian Journal on Applied Mathematics 2012

2011
Xiang En CHEN Yue ZU

Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) 6= C(v) for an...

Journal: :J. Graph Algorithms Appl. 2017
Patrizio Angelini Michael A. Bekos Felice De Luca Walter Didimo Michael Kaufmann Stephen G. Kobourov Fabrizio Montecchiani Chrysanthi N. Raftopoulou Vincenzo Roselli Antonios Symvonis

Defective coloring is a variant of the traditional vertex-coloring in which adjacent vertices are allowed to have the same color, as long as the induced monochromatic components have a certain structure. Due to its important applications, as for example in the bipartisation of graphs, this type of coloring has been extensively studied, mainly with respect to the size, degree, diameter, and acyc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید