A weighted mean matrix, denoted by (N , pn), is a lower triangular matrix with entries pk/Pn, where {pk} is a nonnegative sequence with p0 > 0, and Pn := ∑n k=0 pk. Mishra and Srivastava [1] obtained sufficient conditions on a sequence {pk} and a sequence {λn} for the series ∑ anPnλn/npn to be absolutely summable by the weighted mean matrix (N , pn). Bor [2] extended this result to absolute sum...