نتایج جستجو برای: یادگیری شبکه عصبی

تعداد نتایج: 60481  

محمدعلی افشارکاظمی مریم ظهری

در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای  شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - پژوهشکده فنی و مهندسی 1391

شبکه ی عصبی تپشی نوع خاصی از شبکه های عصبی می باشد که داده های ورودی و خروجی آن از جنس زمان است. این شبکه ها برای مدل سازی دقیـق تر نرون های واقعی و رفتار آن ها ایجاد شده اند. در این پژوهش مسئله ی یادگیری در شبکه های عصبی تپشی مورد بررسی قرار گرفته است. نرخ همگرایی پایین و نیز کندی سرعت یادگیری از جمله مشکلاتی است که تاکنون شبکه های عصبی تپشی با آن مواجه بوده است؛ این در حالی است که به دلیل وجو...

حمید بیگی محمدرضا میبدی

هدف از مهندسی شبکه های عصبی بررسی معایب و مزایای شبکه های عصبی مصنوعی و ارایه روشهایی برای بهبود کارایی آنهاست. یکی از موضوعات مورد بحث در مهندسی شبکه های عصبی چند لایه، یافتن ساختار مناسب(نزدیک به بهینه) برای حل مسئله می باشد. معیار و نحوه انتخاب اندازه شبکه عصبی برای یک مسئله خاص هنوز شناخته شده نیست. در روشهای کلاسیک،طراح شبکه در ابتدای آموزش ساختاری را برای شبکه تعیین و سپس شبکه را آموزش می...

ژورنال: :بیماری های پستان 0
آسیه خسروانیان khosravanian asiye فارس، شیراز، دانشگاه پیام نور، گروه مهندسی کامپیوتر و فناوری اطلاعات سعید آیت saeid ayat

چکیده مقدمه: سرطان پستان رایج ترین شکل سرطان در زنان است. تشخیص به موقع سرطان شانس زنده ماندن بیمار را افزایش می دهد. شبکه های عصبی مصنوعی از روش های نوین مدل سازی و پیش بینی هستند. هدف از این مطالعه تشخیص خوش خیم یا بدخیم بودن توده های سرطان پستان است که برای این منظور سیستم تصمیم یار مبتنی بر شبکه عصبی احتمالی طراحی شد. روش بررسی: در این مطالعه یک شبکه عصبی احتمالی طراحی شد که بر اساس متغیرها...

ژورنال: :پژوهش های مدیریت در ایران 2010
محمدرضا امین ناصری احمد کوچک زاده

یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گ...

ژورنال: :جغرافیا و برنامه ریزی محیطی 0
عبداله سیف عباسعلی ولی محمدحسین رامشت محمدحسین رامشت عباسعلی ولی رضا قضاوی رضا قضاوی

یک سیستم رودخانه­ای یک سیستم بازاست که از درگیر شدن ارتباطات مختلف و پیچیده شکل می گیرد. خصوصیات ذاتی حوضه ها از یک سو و عوامل خارجی از سوی دیگر رفتارهای رودخانه را متاثر می سازد.وجود ارتباطات متقابل متعدد از جمله ارتباطات جریان ورسوب حمل شده وتاثیر عوامل ژئومورفولوژی حوضه و مدل سازی آن از اهمیت ویژه ای برخوردار است.در این مطالعه دونوع شبکه عصبی مصنوعی ژئومورفولوژیکی و غیر ژئومورفولوژیکی برای پ...

ژورنال: :مجله تحقیقات نظام سلامت حکیم 0
دکتر منوچهر فرج زاده farajzadeh m تهران، پل نصر، دانشگاه تربیت مدرس، صندوق پستی 4838-14155 تلفن: 09121723124 نمابر: 02188006544 محمد دارند darand m

مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. در این تحقیق داده های روزانه مرگ و میر و پارامتر دما طی دوره 2005 -2002 مورد استفاده قرار گرفته است. روش کار: برای پردازش داده ها روش های تعیین ضریب همبستگی پیرسون، رگرسیون خطی ساده، رگرسیون چندجمله ای و شبکه های عصبی مصنوعی به عنوان یک روش غیر خطی ( ann )استفاده شده است. یافته ها: نتایج حاصل از کاربرد و تحلیل همبستگی پیرسون نشا...

از جمله مسایل مهم در طراحی آب‌شکن‌ها، پدیده آب‌شستگی موضعی دماغه آنها می‌باشد که به‌علت تنگ‌شدگی مقطع جریان و وجود گردابه‌های قوی به‌وجود می‌آید و یکی از شاخص‌های مهم در تعیین مشخصات حفره‌ی آب‌شستگی، حداکثرعمق آب‌شستگی می‌باشد. امروزه شبکه‌های عصبی کاربردهای بسیاری در مسایل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده است. بنابراین در این پژوهش از...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده مهندسی کامپیوتر 1385

شبکه های عصبی پیمانه ای دسته خاصی از شبکه های عصبی هستند که به جای یک شبکه عصبی یکپارچه بزرگ از تعدادی شبکه عصبی کوچکتر تشکیل می شوند. این شبکه ها نسبت به شبکه های عصبی یکپارچه دارای مزایایی همچون کاهش پیچیدگی مدل، یادگیری سریعتر، مصونیت از تداخل مکانی و زمانی، قابلیت تفسیر بیشتر دانش کسب شده و شباهت بیشتر به شبکه های عصبی طبیعی هستند. از جمله انواع شبکه های پیمانه ای می توان به شبکه های حاصل ا...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید