نتایج جستجو برای: یادگیری شبکه عصبی
تعداد نتایج: 60481 فیلتر نتایج به سال:
در این مقاله به منظور پیش بینی درصد ورشکستگی شرکت های بورسی از مدلهای شبکه عصبی فازی استفاده گردیده که توانایی کار در محیط پویا و غیر قطعی را امکان پذیر می سازد. در این میان با استفاده از منطق فازی متغییر های مختلف کلامی به منظور تعریف هر شاخص مشخص گردیده است و با ایجاد توابع عضویت هر کدام با استفاده شبکه عصبی به ایجاد یک سیستم یادگیرنده اقدام شده است. از میان مدل های مختلف شبکه عصبی،شبکه پرسی...
شبکه ی عصبی تپشی نوع خاصی از شبکه های عصبی می باشد که داده های ورودی و خروجی آن از جنس زمان است. این شبکه ها برای مدل سازی دقیـق تر نرون های واقعی و رفتار آن ها ایجاد شده اند. در این پژوهش مسئله ی یادگیری در شبکه های عصبی تپشی مورد بررسی قرار گرفته است. نرخ همگرایی پایین و نیز کندی سرعت یادگیری از جمله مشکلاتی است که تاکنون شبکه های عصبی تپشی با آن مواجه بوده است؛ این در حالی است که به دلیل وجو...
هدف از مهندسی شبکه های عصبی بررسی معایب و مزایای شبکه های عصبی مصنوعی و ارایه روشهایی برای بهبود کارایی آنهاست. یکی از موضوعات مورد بحث در مهندسی شبکه های عصبی چند لایه، یافتن ساختار مناسب(نزدیک به بهینه) برای حل مسئله می باشد. معیار و نحوه انتخاب اندازه شبکه عصبی برای یک مسئله خاص هنوز شناخته شده نیست. در روشهای کلاسیک،طراح شبکه در ابتدای آموزش ساختاری را برای شبکه تعیین و سپس شبکه را آموزش می...
چکیده مقدمه: سرطان پستان رایج ترین شکل سرطان در زنان است. تشخیص به موقع سرطان شانس زنده ماندن بیمار را افزایش می دهد. شبکه های عصبی مصنوعی از روش های نوین مدل سازی و پیش بینی هستند. هدف از این مطالعه تشخیص خوش خیم یا بدخیم بودن توده های سرطان پستان است که برای این منظور سیستم تصمیم یار مبتنی بر شبکه عصبی احتمالی طراحی شد. روش بررسی: در این مطالعه یک شبکه عصبی احتمالی طراحی شد که بر اساس متغیرها...
یکی از گامهای مهم در توسعه شبکه های عصبی مصنوعی طراحی معماری شبکه است که تأثیر زیادی بر عملکرد شبکه دارد. در طراحی معماری شبکه های عصبی مصنوعی، عواملی از قبیل تعداد لایه های پنهان، تعداد نرون ها در هر لایه، توابع تبدیل و الگوریتم آموزش باید تعیین شوند. محققان در طراحی معماری شبکه به طور عمده از طریق سعی و خطا عمل می کنند و یا اینکه اثر متقابل بین عوامل مختلف در طراحی معماری شبکه را در نظر نمی گ...
یک سیستم رودخانهای یک سیستم بازاست که از درگیر شدن ارتباطات مختلف و پیچیده شکل می گیرد. خصوصیات ذاتی حوضه ها از یک سو و عوامل خارجی از سوی دیگر رفتارهای رودخانه را متاثر می سازد.وجود ارتباطات متقابل متعدد از جمله ارتباطات جریان ورسوب حمل شده وتاثیر عوامل ژئومورفولوژی حوضه و مدل سازی آن از اهمیت ویژه ای برخوردار است.در این مطالعه دونوع شبکه عصبی مصنوعی ژئومورفولوژیکی و غیر ژئومورفولوژیکی برای پ...
مقدمه: تغییرات فصلی و روزانه مرگ و میر ارتباط مستقیمی با دما دارد. در این تحقیق داده های روزانه مرگ و میر و پارامتر دما طی دوره 2005 -2002 مورد استفاده قرار گرفته است. روش کار: برای پردازش داده ها روش های تعیین ضریب همبستگی پیرسون، رگرسیون خطی ساده، رگرسیون چندجمله ای و شبکه های عصبی مصنوعی به عنوان یک روش غیر خطی ( ann )استفاده شده است. یافته ها: نتایج حاصل از کاربرد و تحلیل همبستگی پیرسون نشا...
از جمله مسایل مهم در طراحی آبشکنها، پدیده آبشستگی موضعی دماغه آنها میباشد که بهعلت تنگشدگی مقطع جریان و وجود گردابههای قوی بهوجود میآید و یکی از شاخصهای مهم در تعیین مشخصات حفرهی آبشستگی، حداکثرعمق آبشستگی میباشد. امروزه شبکههای عصبی کاربردهای بسیاری در مسایل مختلف مهندسی آب که رابطه و الگوی مشخصی بین عوامل مؤثر بر وقوع یک پدیده وجود ندارد، پیدا کرده است. بنابراین در این پژوهش از...
شبکه های عصبی پیمانه ای دسته خاصی از شبکه های عصبی هستند که به جای یک شبکه عصبی یکپارچه بزرگ از تعدادی شبکه عصبی کوچکتر تشکیل می شوند. این شبکه ها نسبت به شبکه های عصبی یکپارچه دارای مزایایی همچون کاهش پیچیدگی مدل، یادگیری سریعتر، مصونیت از تداخل مکانی و زمانی، قابلیت تفسیر بیشتر دانش کسب شده و شباهت بیشتر به شبکه های عصبی طبیعی هستند. از جمله انواع شبکه های پیمانه ای می توان به شبکه های حاصل ا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید