نتایج جستجو برای: نگاشت مدولی حافظ تعامد
تعداد نتایج: 5157 فیلتر نتایج به سال:
در این رساله پس از تعاریف و مفاهیم مقدماتی، اتحاد متوازی الاضلاع و چند توصیف از فضاهای ضرب داخلی مورد بحث قرار گرفته و سپس نگاشت تصویر شعاعی و چند توصیف از فضاهای ضرب داخلی و آنگاه تعامد در فشاهای خطی و نرمدار و در پایان نیز از نگاشت دوگانی و نقش آن در توصیف فضاهای ضرب داخلی توصیف شده است .
در این پایان نامه محکی برای منظم پذیری آرنزی نگاشت خای دوخطی روی فضاهای نرمدار مورد بررسی قرار می گیردکه بطور خاص روی اعمال مدولی باناخ بکار برده می شود.سپس به بررسی برخی شرایط پرداخته می شود که تحت آن دوگان دوم یک اشتقاق بتوی یک مدول باناخ دوگان دوباره یک اشتقاق است.
هدف از انجام این رساله مطالعه میانگین پذیری ضعیف گسترش مدولی یک جبرباناخ است. سپس برای دو عدد متفاوت n و m رابطه بین n-میانگین پذیری ضعیف و m-میانگین پذیری ضعیف را مورد بررسی قرار می دهیم. هم چنین بررسی می کنیم در چه صورت یک همریختی حافظ میانگین پذیری و n-میانگین پذیری ضعیف است.
متیو و رادی [14] ثابت کردهاند که اگر ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb از نوع i با فضای ایدهآل هاسدورف و کلاً ناهمبند باشد، آنگاه جردن ایزومورفیزم است. در این یادداشت نشان میدهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.
در این پایان نامه نگاشت های جمعی (خطی) بین جبرهای باناخ بطورقوی حافظ معکوس تعمیم یافته (دراژین، گروهی) را مورد مطالعه قرار می دهیم. ثابت می کنیم که اگر نگاشت جمعی ? بین جبرهای باناخ a وb بطور قوی حافظ معکوس تعمیم یافته باشد و?(a^(-1))?b^(-1)?? آن گاه?(e)? همریختی جردن است و?(e) با برد? جابجا می شود. همچنین نگاشت های جمعی بطورقوی حافظ معکوس دراژین (گروهی) بین جبرهای باناخ یکدار را مورد مطالعه قر...
در ابتدا به ویژگی های نگاشت خاص ? از مشبکه ی ایدال های حلقه ی r به مشبکه ی زیرمدول های m می پردازیم. برای راحتی کار اگر نگاشت ? یک همریختی مشبکه ای باشد، مدول m را یک ?–مدول می نامیم. بررسی می کنیم تحت چه شرایطی نگاشت ? یک همریختی است، سپس نشان می دهیم نگاشت ? از مشبکه ی ایدال های r به مشبکه های زیرمدول های m با ضابطه ی؛ bm=b))? تعریف می شود، یک یکریختی مشبکه ای است اگر و تنها اگر m یک مدول متن...
فرض کنیمmn (c) فضای همه ی ماتریس های مختلط n×n باشد. نگاشت خطی?mn(c) ?:mn(c) را حافظ تشابه نامیم اگر برای هر دو ماتریس متشابه? mn (c) a,b,?(a) و ?(b) نیز متشابه باشند. در این پایان نامه ابتدا نگاشت های خطی حافظ تشابه بر روی فضای همه ی ماتریس های مختلط n×n را تعیین می کنیم سپس نتایج حاصله را روی حالت نامتناهی البعد گسترش می دهیم و به بررسی نگاشت های خطی حافظ تشابه بر روی جبر همه ی عملگرهای خطی ک...
فرض کنید a یک جبر باناخ و "a دوگان دوم آن مجهز به ضرب اول یا دوم آرنز باشد. در این پایان نامه، شرایطی را بررسی می کنیم که تحت آن منظم بودن a، منظم بودن "a را ایجاب می کند. به عنوان یک نتیجه نشان می دهیم که سه ساختار "a-مدولی روی دوگان چهارم a بر هم منطبق اند. همچنین محکی را برای منظم بودن نگاشت های دو خطی کراندار خاصی بیان می کنیم و سپس منظم بودن و منظم آرنز خارج قسمتی بودن یک کلاس ...
نظریه فردهلم را نسبت به هر ایدآل دلخواه روی جبرهای باناخ یکدار گسترش می دهیم. اگر $ heta:mt alongrightarrowmt b$ نگاشت خطی و در حد ایدآل غیراساسی پوشا باشد، در حالت هایی که $mt c_r(mt a)$ یا $mt c_r(mt b)$ جبر باناخ جابه جایی است یا $mt a$ و $mt b$، $ce$-جبرهای یکدار یا $mt a$ یک $ce$-جبر یکدار از رتبه ی حقیقی صفر و $mt b$ یک جبر باناخ یکدار باشد به بیان شرایطی...
فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید