نتایج جستجو برای: نمایش جبر عملگر
تعداد نتایج: 13581 فیلتر نتایج به سال:
فرض می کنیم a یک جبر روی میدان f (r یا) و a1 هر زیر جبری از a باشد، نگاشت جمعی (خطی) d: a1--->a را مشتق گیری جمعی (خطی) نامیده می شود اگر d(ab)ad(b) + d(a)b, a,b a1 و d را inner گوئیم در صورتیکه وجود داشته باشد c a1 ای بطوریکه: d(a)ac - ca, a a1 فرض می کنیم x یک فضای برداری نرم دار، و b(x) جبر عملگرهای خطی کراندار روی x باشد، مجموعه عملگرهای خطی کرانداری که دارای رتبه متناهی می باشد را با f(x) ...
فرض کنیم x یک فضای باناخ حقیقی باشد . ثابت می کنیم که اگر یک عملگر مثبت ، متقارن ، یک به یک و اکیداً نامنفرد از x به توی دوگانش وجود داشته باشد آنگاه یا x با یک فضای هیلبرت یکریخت می باشد یا شامل یک زیر فضای متمم شده غیر بدیهی است که با یک فضای هیلبرت یکریخت می باشد . همچنین ما به مورد غیر متقارن نیز خواهیم پرداخت .
فرض کنیم $ u$ یک دنباله وزنی بر $mathbb{z}$ و $varphi$ و $psi$ توابع مختلط مقدار روی $mathbb{z}$ باشند به طوری که $.varphi(mathbb{z})subseteq mathbb{z}$ در این پایان نامه، کرانداری، فشردگی و فشردگی ضعیف عملگرهای ترکیبی وزن دار $c_{psi, varphi}$ را بر پیش دوگان فضاهای باناخ $c_0(mathbb{z}, dfrac{1}{ u})$ و دوگان فضا...
در این مقاله نگاشتهای خطی تعریف شده روی جبر همه عملگرهای خطی کراندار مطالعه میشوند. در واقع فرم چنین نگاشتهایی که از دو جهت حافظ نقطه ثابت صفر عملگر باشند بدست میآیند. همچنین، نگاشتهای خطی روی فضای ماتریسها با درایههای از یک میدان با مشخصه مخالف 2 را در نظر گرفته و در صورتی که حافظ نقاط ثابت ماتریسها باشند فرم آنها نیز به دست میآیند.
جبر گریس، جبر جابجایی غیر شرکت پذیر روی فضای برداری حقیقی از بعد 196884 می باشد که گروه غول را به عنوان گروه خود ریختی های خود دارد. این نوع جبر توسط ریاضی دان نامی، گریس در سال 1980 ساخته شد و متعاقباً در سال 1982 از آن برای ساخت گروه غول مورد استفاده واقع شد. البته نکته ای که باید به آن اشاره کرد این است که گروه غول قبلاً در سال 1976 توسط فیشر و گریس ساخته شده بود، و چند ماه بعد مرتبه ی آ...
در این پایان نامه مرکز ساز جبرهای عملگری استاندارد وh^*- جبرهای نیم ساده را بیان می کنیم. فرض کنیم a یک *h-جبر نیم ساده و t: a -> a یک نگاشت جمعی باشد به طوری که به ازای هر x∈a و بعضی n ≥ 1 داشته باشیم. 2t(x n+1) = t(x)xn + xnt(x) در این صورت t یک مرکزساز چپ و راست است. این پایان نامه بر اساس مقاله ی زیر نوشته شده است: i. kosi-ulbl and j. vukman, on centralizers of standard operator algebras ...
حلقه ی r را آرتینی گوییم هرگاه ایدال های آن در شرط زنجیر نزولی صدق کنند. برای حلقه جابجایی r یک r جبر، r مدولی مثل a است به همراه یک ضرب دوخطی روی آن که با ضرب اسکالر مدول سازگار باشد. r جبر a را آرتینی گوییم هرگاه r حلقه ی جابجایی و آرتینی بوده و a به عنوان r مدول متناهی مولد باشد. فرض کنید که a یک جبر آرتینی باشد. بعد متناهی گرایی a که با fdim(a) نمایش داده می شود، بیشینه بعد تصویری a مدول ها...
فرض کنیم a یک زیر جبر عملگری با عملگر واحد i در (b(h باشد. می گوییم نگاشت خطی ? از a به توی خودش یک نگاشت مشتق پذیر در i است هر گاه: (?(st)=?(s)t+s?(t برای هر، s,t?a با خاصیت st=i. در این پایان نامه نشان می دهیم، هر نگاشت مشتق پذیر پیوسته با توپولوژی عملگر قوی در i روی جبر لانه ای algn یک مشتق داخلی است. همچنین راجع به نگاشتهای خطی مشتق پذیر در یک نقطه نتایج دیگری را بدست می آوریم. واژه های ک...
چکیده ندارد.
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید