نتایج جستجو برای: نامساوی مقدار ویژه
تعداد نتایج: 122555 فیلتر نتایج به سال:
در این پایان نامه مسئله مقدار ویژه معکوس برای ماتریس های نامنفی متقارن مورد بررسی قرار می گیرد. بدین منظور، ابتدا شرط حل پذیری برای مسئله مقدار ویژه معکوس نامنفی حقیقی ارائه شده، سپس ثابت می شود که این شرط برای ساخت ماتریس نامنفی متقارن با طیف داده شده سازگار است. در ادامه روشی برای ساخت ماتریس ژاکوبی نامنفی با استفاده از مقادیر ویژه داده شده ارائه می گردد و در نهایت مثال های عددی ضمیمه می شود.
مسئله ی مقدار ویژه معکوس در بسیاری از علوم مثل طراحی کنترل، ژئوفیزیک، نظریه مدار، طیف سنج مولکولی کاربرد دارد. یکی از مهمترین کاربردهای این مسئله، استفاده از آن در مبحث تخصیص مقدار ویژه در نظریه کنترل است. به دلیل اهمیت این مبحث در علوم مهندسی، در این پایان نامه ارتباط مسئله تخصیص مقدار ویژه با مسئله ی مقدار ویژه معکوس ماتریسی مورد بررسی قرار گرفته است و سپس با ارائه روشی جدید برای ح...
درصورتیکه ? ? ? ? : یک تابع محدب ، b یک عملگر خودالحاق ، p یک تصویر متعامد در یک فضای تفکیک پذیر هیلبرت h باشد ، آنگاه به نامساوی tr ?(p b|p h ) ? tr (p ?(b)|p h ) نامساوی برزین ( berezin ) گفته می شود. برای فضای سوبولوف hk(?) که r^n ? ? و برای هر , ?? u از این فضا اگر dx ?? (x) d^? ?? (x) d^? ] = ?_?(@0?|?|,|?|?k)???_??a_?? (x) ? ?? و ?? b[باشد ، آنگاه برای هر hk(?) u ? ، ثابت های c , g ...
این پایان نامه در راستای تعیین مقادیر ویژه یک ماتریس دلخواه براساس موضع یابی می باشد. ابتدا صفحه های دایره شکل و بیضی شکل مقادیر ویژه را بدست می اوریم همچنین یک دنباله نزولی از مستطیلهای (rp) را طوری می سازیم که هر مستطیل شامل همه مقادیر ویژه ماتریس مختلط مفروض a باشد. و وقتی که a نرمال باشد یا همه مقادیر ویژه آن حقیقی باشند هر rp می تواند بدون در دست داشتن مقادیر ویژه محاسبه شود....
چکیده ندارد.
چکیده ندارد.
خلاصه : حل بسیاری از مسائل در علوم و مهندسی مستلزم حل دستگاه ax= x است که در آن اسکالر و بردار غیر صفر x نامعلومند. مسئله فوق را یک مسئله مقدار ویژه می نامند . در این پایان نامه ابتدا تعاریف و قضایای مهم که زیر بنای حل عددی مسئله فوق است بیان می گردند و سپس روشهای عددی که به سه دسته عمده تقسیم می شوند و عبارتند از :)1 تعیین چند جمله ای مشخصه بدون استفاده از بسط دترمینان مشخصه)2 روشهای تکراری و)...
در این پایان نامه ابتدا به معرفی روشی برای یافتن ریشه دوم ماتریس های مربعی که مقدارویژه متمایز دارند می پردازیم و پس از آن ریشه دوم ماتریس های مربعی مرتبه دوم را در حالت های مختلف به دست می آوریم و در ادامه ریشه دوم ماتریس های مربعی مرتبه بالاتر را مورد مطالعه قرار می دهیم.
دراین رساله، ابتدا به تعریف فضا های هاردی وزندار و ماتریس عملگرمیانگین در فضای هاردی وزندار پرداخته و درادامه مباحثی عمده در نظریه عملگرها، نظیر:کرانداری،فشردگی، طیف، مقادیر ویژه، بردارهای ویژه را در مورد ماتریس عملگرمیانگین مورد بررسی و تجزیه و تحلیل قرار می دهیم. همچنین شرائط لارم وکافی برای دوری بودن عملگرانتقال پیشرو را بیان واثبات خواهیم نمود.
فرض کنید a یک m-ماتریس نامنفرد و (?(a کمترین مقدار ویژه ی آن باشد. تاکنون کران هایی برای ?(a) در حالتی که a یک m-ماتریس قطرغالب زنجیری ضعیف باشد، داده شده است. این تحقیق کران های جدیدی از ?(a) را برای -mماتریس نامنفرد کلی a می سازد. مثال های عددی نشان می دهند که نتایج بدست آمده در بعضی حالات، نتایج معلوم قبلی را بهبود می بخشند.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید