نتایج جستجو برای: میانگین پذیری درونی
تعداد نتایج: 124275 فیلتر نتایج به سال:
جبرهای لائو رده بزرگی از جبرهای باناخ است که اولین بار توسط لائو در سال ????معرفی گردید. میانگین پذیری جبرهای باناخ یکی از مهمترین مباحث آنالیز روی جبرهای باناخ است. در این پایان نامه به مطالعه میانگین پذیری چپ و میانگین پذیری داخلی جبرهای لائو می پردازیم.
در این رساله برای جبر باناخ a و مشخصه ی ناصفری روی آن مفهوم شبه میانگین پذیری مشخصه ای را معرفی و مطالعه میکنیم. همچنین شرایط لازم و کافی را برای شبه میانگین پذیری a بدست می آوریم و به بررسی خواص موروثی آن می پردازیم. به عنوان مثال نشان می دهیم a شبه میانگین پذیر مشخصه ای است اگر وتنها اگر یکدار شده ی آن شبه میانگین پذیر مشخصه ای باشد. همچنین به بررسی رابطه ی این مفهوم روی دوگان دوم و حاصلضرب ت...
در این پایان نامه بحث بر روی جبرهای باناخ میانگین پذیری تقریبی و شبه میانگین پذیری است. ابتدا به تعریف و خواص میانگین پذیری(انقباض پذیری)می پردازیم.سپس با ارایه ی تعریف میانگین پذیری تقریبی(انقباض پذیری تقریبی)،سعی می کنیم بعضی خواص مشترک و غیر مشترک آن را با میانگین پذیری(انقباض پذیری)بررسی کنیم.در پایان به خواص جبرهای باناخ شبه میانگین پذیر و شبه انقباض پذیر خواهیم پرداخت.
در این پایان نامه، شرایط لازم و کافی برای میانگین پذیری و میانگین پذیری ضعیف جبرهای باناخ را بررسی می کنیم و نشان می دهیم که برای یک گروه فشرده ی موضعی با تابع وزن ?،جبر بورلینگ (l^1 (g,? یک جبر باناخ است. علاوه بر این اگرg یک گروه فشرده ی موضعی آبلی باشد، (l^1 (g,? میانگین پذیر ضعیف است اگر و تنها اگر هیچ همریختی گروهی پیوسته ی غیر بدیهی ?:g?c موجود نباشد که ?>(((sup_t?g(|?(t)|/(?(t)?(t^(-1.
ابتدا مفاهیم مشخصه های یک جبر باناخ که در آن و همومورفیسم های پیوسته روی یک جبر باناخ می باشند را معرفی و تعریف می کنیم. اگر = باشد این مشخصه ها را با یا نمایش می دهیم. تعاریف انقباض پذیری دوتصویری و قطر را بترتیب به مفاهیم -انقباض پذیری -دوتصویری و -قطر توسیع می دهیم که در آن همومورفیسم پیوسته روی یک جبر باناخ است. سپس رابطه های بین -انقباض پذیری -دوتصویری و وجود یک -قطر را برای یک جبر باناخ...
فرض کنید a یک جبر باناخ و ? یک تابعک خطی غیر صفر کراندار و ضربی روی a باشد گوئیم a, ? میانگین پذیر است هر گاه یک m عضو **a موجود باشد که m(?)=1 و m(f.a)=?(a)m(f) وقتی f عضو **aو a عضو a باشد. دراین پایان نامه به مطالعه ی ?ـمیانگین پذیری جبرهای باناخ پرداخته و ارتباط آن با میانگین پذیری, حاصل ضرب تانسوری و مجموع مستقیم جبرهای باناخ را مورد بررسی قرار می دهیم...
فرض کنید a یک جبر باناخ باشد. ما در این پایان نامه ایده آل های بسته i از a که اولین گروه کوهمولوژی از a با ضرایبی در i^* است را مطالعه می کنیم یعنی 0=( a,i^*) h^1 . همچین ایده آل های بسته را وقتی a میانگین پذیر ضعیف یا دوهمواری است و نیز بعضی خواص ارثی ایده آل های میانگین پذیر را بررسی می کنیم.
فرض کنیم g یک گروه موضعا فشرده باشد هدف از این پایان نامه بررسی شرایطی است که ? l?^p (g) به عنوان یک باناخ l^1 (g)- مدول تزریقی و میانگین پذیر باشد. در واقع با تعریف مفهوم چند نرمیها بر روی فضاهای باناخ به هدف خود میرسیم. ابتدا در یک حالت خاص که s یک نیمگروه باشد در مورد تزریقی بودن فضای l^1 (s) مطالعه می کنیم سپس با ارایه مثال هایی از نیمگروه های مختلف مشاهده می کنیم اگرs نیمگروهی باشد که میان...
در این پایان نامه به بسط مفهوم میانگین پذیری مدولی پرداخته ایم و هم ارزی میانگین پذیری مدولی و وجود قطر واقعی مدولی را به اثبات رساندیم و در ادامه قضیه مشهور جانسون را تعمیم دادیم و میانگین پذیری مدولی را برای کلاسی از جبرهای باناخ ثابت نمودیم، در واقع نشان دادیمs)l^1) به عنوان یک e))l^1-مدول میانگین پذیر مدولی است اگر و فقط اگر s میانگین پذیر باشد.
در این پایان نامه ابتدا ضرب مدولی و ضرب آرنز را مورد بررسی قرار می دهیم و قضایای اساسی را برای آنها اثبات می کنیم سپس مفهوم n-میانگین پذیری را برای nهای عضو z توسیع می دهیم، در پایان مطالبی راجب عملگرهای فسرده ضعیف بیان می کنیم. در این پایان نامه که در سه فصل گرداوری شده است، تمام قضایای اساسی فصل3 اثبات شده است.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید