نتایج جستجو برای: معادله ی ماتریسی

تعداد نتایج: 113331  

معادلات ‎$X-AXB=C$‎ و ‎$A X+X^{*} C=B$‎ دارای کاربرد وسیعی در نظریه کنترل و سیستم های خطی می باشند. در این پژوهش به بررسی شرط ‎‎لازم و کافی برای وجود جواب آن‎‎‌ها‏ با در نظرگرفتن شرایطی پرداخته شده است. برای پیدا کردن جواب دقیق معادله دوم از نمایش ماتریسی عملگرها استفاده شده است‏، که این امکان را فراهم آورده‏، که بتوان جواب معادله را بر حسب وارون مور-...

2016

هدیکچ هقباس و فده : ناطرس زا بسانم تاعلاطا اب یم صاخ یئایفارغج هیحان رد فلتخم یاه همانرب ناوت ار یبط یاه یارب لابرغ و نامرد یرگ ) Screening ( هورگ دومن صخشم رطخرپ یاه . نآ زا هک اج گرم نازیم نانمس ناتسا تشادهب زکرم لااب ریم و ی زکرم رد یناقوف شراوگ هاگتسد ناطرس رثا رب ار ی ا هدرک شرازگ ناریا تس . یماـمت تـبث و یـسررب یارـب تفریذپ ماجنا یعماج قیقحت نانمس ناتسا یموب تیعمج نیب رد ناطرس دراوم ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان - دانشکده علوم ریاضی 1392

در این پایان نامه، یک روش عددی که جوابی تقریبی به صورت یک چندجمله ای برای معادلات تفاضلی منفرد خطی مرتبه ی بالا تولید می کند، مورد بررسی قرار می گیرد. با استفاده از چندجمله ای های بسل و نقاط گره این روش عددی معادلات مذکور را به شکل ماتریسی تبدیل می کند.این معادله ی ماتریسی را به صورت یک دستگاه معادلات خطی با ضرایب بسل نامعین در می آوریم و با استفاده از آن جواب معادله را می یابیم. از ایده ی این ...

ژورنال: :مهندسی سازه 0
مهدی نوری

در این مقاله، معادله­ی ماتریسی ریکاتی برای حل مسئله­ی مقدار ویژه برای ماتریس­های متقارن نسبت به هر دو قطر بکار رفته است. برای نیل به این منظور، از تبدیلات متشابه بر روی ماتریس­هایی با خواص فوق و همچنین از معادله­ی ماتریسی ریکاتی استفاده شده است. روند کار تجزیه ماتریس­ها به ماتریس­هایی با ابعاد کوچک برای محاسبه مقادیر و بردارهای ویژه متناظر می­باشد. برای مطالعه کارایی این روش، مثال­هایی عددی و س...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید باهنر کرمان - دانشکده ریاضی و کامپیوتر 1392

الگوریتم های تکراری در شاخه های جبر ماتریسی و دستگاه شناسایی مشهور هستند. برای مثال، استارک و نیتامر یک روش تکراری برای جواب های معادلات سیلوستر زمان پیوسته (ct)، ax+xb=f ارائه دادند. موکیدانی، زو و میزوکامی در مورد یک الگوریتم تکراری برای معادلات لیاپانو جبری تعمیم یافته بحث کردند. روش های ژاکوبی و گاوس سایدل برای ax=b، دو الگوریتم تکراری هستند. اخیرا، دو الگوریتم تکراری برمبنای گرادیان و یک ا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم 1394

در این پایان نامه یک روش عددی برای حل دستگاه معادلات انتگرال معرفی می گردد. در این روش با استفاده از چندجمله ای های بسل و نقاط هم محلی‏، دستگاه معادلات انتگرال ولترای خطی را به صورت معادله ی ماتریسی در می آوریم. معادله ی ماتریسی به صورت یک دستگاه معادلات خطی با ضرایب بسل مجهول است. با این روش وقتی که جوابهای دقیق چند جمله ای باشند می توانیم جوابهای واقعی را بدست آوریم. همچنین تعدادی مثال برا...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1393

در این رساله ابتدا با استفاده از چند جمله ای های برنولی و خواص آن ها ماتریس های عملیاتی مشتق، انتگرال و حاصلضرب چند جمله ای های برنولی ساخته می شوند و روش ماتریسی برنولی معرفی می گردد. سپس در اولین تلاش روش ماتریسی مذکور را برای حل عددی معادلات دیفرانسیل معمولی ماتریسی مرتبه اول به کار برده و کارایی این روش را نسبت به روش هم مکانی از طریق حل چند مثال عددی نشان می دهیم. همچنین حل عددی معادلات با...

Journal: :علوم 0
یدالله اردوخانی yadollah ordokhani دانشگاه الزهرا

در این مقاله یک روش عددی مناسب برای حل معادلات انتگرال- دیفرانسیل فردهلم غیر خطی با تأخیر زمانی ارائه شده است. روش مبتنی بر بسط تیلور می باشد. این روش معادله انتگرال- دیفرانسیل و شرایط داده شده را به معادله ماتریسی که متناظر با یک دستگاه از معادلات جبری غیر خطی با ضرایب مجهول بسط تیلور می باشد تبدیل می کند، که از حل دستگاه، ضرایب بسط تیلور تابع جواب به دست می آید. سپس با مثال هایی کارایی روش را...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1393

در این رساله، دو الگوریتم بلوکی برای حل دستگاه های خطی نامتقارن با چند طرف ثانی ارائه می شوند. این الگوریتم ها بر مبنای روش حداقل مانده ی کمترین توان های دومlsmr)‎) و فرآیند دوقطری سازی بلوکی 1 ‎block bidiagonalization1)‎)می باشند‎.الگوریتم های ‎bl-lsmr1‎و‎bl-lsmr2‎ به ترتیب با استفاده از می نیمم سازی نرم-2 ی هر ستون از معادله ی نرمال و می نیمم سازی نرم فروبنیوس ماتریس مانده ی معادله ی نرما...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه خلیج فارس - دانشکده علوم پایه 1390

معادله لیاپانوف 0 ap+pat+bbt= و 0=atq+qa+ctc را به روش های روش آرنولدی بلوکی ، آرنولدی تعمیم یافته و لانزوس تعمیم یافته حل کرده و نتایج آن را بررسی نمودیم، که به طور خلاصه به صورت زیر می باشد. در روش آرنولدی بلوکی با افزایش تکرارها (m) ذخیره سازی و محاسبه v_m پرهزینه می گردد. زمانی که ماتریس a، بزرگ و تنک باشد، در هر تکرار زمان زیادی صرف تجزیه qr و روند گرام اشمیت اصلاح شده می شود. در واقع رو...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید