نتایج جستجو برای: مشبکه باناخ
تعداد نتایج: 1264 فیلتر نتایج به سال:
فضای ریس e دارای خاصیت b است هرگاه هر زیرفضا از فضای ریس e که در دوگان ترتیبی e کراندار ترتیبی است، در e نیز کراندار ترتیبی باشد.
مفهوم مدوری خیلی از مفهوم مشتق پذیری دور نیست. در بعضی مقالات رابطه بین مدوری و همواری بررسی شده است. در این مقاله رابطه ی جدیذ بین مدوری و خیلی همواری را توصیف خواهیم کرد.یک فضای باناخ را مدور است در صورتی که وسط هر دو نقطه متمایز واقع بر کره واحد فضای باناخ در داخل گوی باز واحد آن فضا باشد. یک فضای باناخ را هموار گوییم در صورتی که نرم آن در هرنقطه ناصفر فضا مشتق پذیر گاتو باشد و آنرا خیلی همو...
شرح مختصر زندگانی و فعالیت های علمی استفان باناخ ریاضیدان لهستانی.
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
این پایان نامه به توصیف فشردگی و پیش فشردگی زیرمجموعه ها در فضاهای خطی نرم دار نامتقارن می پردازد. اگرچه بعضی از نتایج کلی برای موارد کلی به دست آمده اند، ما روی فضاهای خطی نامتقارن (x,q) تمرکز می کنیم که مستقیماً مربوط به مشبکه های باناخ (x,?.?,?)هستند که از ترتیب ? برای تعریف یک نرم نامتقارن خاص با فرمول q(x)??x?0?,x?xاستفاده می شود. در پایان رده ی خاصی از زیر مجموعه های k از فضای خطی ن...
فرض کنیم s یک نیمگروه گسسته باشد. در این پایان نامه جبر نیم گروهی l^1(s)، میانگین پذیری و ثابت میانگین پذیری cs آن بررسی شده است. به خصوص نشان داده میشود که بازه (5,1) مقادیری ممنوع برای cs است و اگر >cs5، آنگاه s یک گروه است. نشان داده می شود که میتوان فضای کاراکترهای جبر باناخ l^1(s) را با فضای نیمکاراکترهای s یکی گرفت. جبر فوریه l^1(s) یک جبر تابعی باناخ است که لزوماً منظم نیست. در حالتی...
فرض کنید $mathcal{B(X)}$ جبر شامل تمام عملگرهای خطی کراندار روی فضای باناخ $mathcal{X}$ و $phi:mathcal{B(X)}longrightarrow mathcal{B(X)}$ یک نگاشت جمعی دوسویی باشد که جفت عملگری باناخ را از دو طرف حفظ می کند. در این مقاله، نشان می دهیم که به ازای هر $A in mathcal{B(X)}$ و $x in mathcal{X}$، اسکالرهای $alpha , ...
کار روی برد اشتقاقهای روی جبرهای باناخ توسط سینگر و ورمر در سال 1955 آغاز شد. آنها نشان دادند که برد هر اشتقاق کراندار روی جبرهای باناخ تعویضپذیر، داخل رادیکال جیکوبسن قرار می گیرد. آنها حدس زدند که شرط پیوستگی اضافی است و این به حدس سینگر-ورمر مشهور شد. بیش از سی سال گذشت تا توماس در سال 1988 این حدس را ثابت کرد. در تلاش برای حل این مسئله و چند مسئله دیگر، شاخه جدیدی در آنالیز تابعی به نام نظر...
قابها-p روی فضاهای باناخ توسیع مستقیمی از قابها روی فضاهای هیلبرت می باشند. برخلاف انواع دیگر قابها، نگاشت -قابها به دلیل خطی نبودن نگاشت دوگانی، خاصیت خطی و عملگری خود را از دست داده و مانند یک نگاشت غیر خطی -p قاب مانند -pقابها خواصی از نگاشت -p به دوگان آن عمل می کند. در این مقاله با گذاشتن شرایطی روی X از فضای باناخ ،$T^{perp}$با الحاق عملگر U بطور ضعیف پیوستگی، یکن...
در این مقاله برای اولین بار مفهوم جدیدی به عنوان مرکز توپولوژیکی ضعیف چپ و راست برای دوگان دوم جبرهای باناخ a ، را تعریف کرده و رابطۀ آن را با آرنز منظم پذیری بررسی می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید