نتایج جستجو برای: مدل varma

تعداد نتایج: 120396  

Journal: :European heart journal 2014
Bernhard Meier Steffen Gloekler Daisy Dénéréaz Aris Moschovitis

pace 2013;15(Suppl 1):i14–i16. 8. Varma N, Epstein A, Irimpen A, Schweikert R, Shah J, Love CJ. Efficacy and safety of automatic remote monitoring for ICD follow-up: the TRUST trial. Circulation 2010; 122:325–332. 9. Varma N. Rationale and design of a prospective study of the efficacy of a remote monitoring system used in ICD follow-up: the Lumos-T reduces routine office device follow-up study ...

Journal: :Journal of Business & Economic Statistics 2008

Journal: :Journal of Economic Dynamics and Control 2009

1997
Holger Bartel

Cointegrated VARMA models can be parameterized by using the echelon form, which is characterized by the Kronecker indices. Three diierent methods for estimating the Kronecker indices of cointegrated echelon form VARMA models are discussed and compared. They have the common feature of estimating the individual equations of the system separately and using order selection criteria. The small sampl...

2005

Dear Sirs, In a recent series co-workers (see e.g. of papers by Morbidelli and Varma and Morbidelli and Varma 1986a; Morbidelli et al., 1986h Lee and Varma, 1987, 1988; Bauman and Varma 1990), the multiplicity behaviour of a fixed bed reactor is discussed. The basis for this analysis was given by Morbidelli and Varma (1986a) and Morbid& et al. (1986b), where the authors devote many columns to m...

Journal: :Computational Statistics & Data Analysis 2006
Guy Mélard Roch Roy Abdessamad Saidi

The exact likelihood function of a Gaussian vector autoregressive-moving average (VARMA) model is evaluated in two non standard cases: (a) a parsimonious structured form, such as obtained in the echelon form structure or the scalar component model (SCM) structure; (b) a partially non stationary (unit root) model in error-correction form. The starting point is Shea’s algorithm (1987, 1989) for s...

Journal: :J. Multivariate Analysis 2011
Y. Boubacar Mainassara Christian Francq

The asymptotic properties of the quasi-maximum likelihood estimator (QMLE) of vector autoregressive moving-average (VARMA) models are derived under the assumption that the errors are uncorrelated but not necessarily independent. Relaxing the independence assumption considerably extends the range of application of the VARMA models, and allows to cover linear representations of general nonlinear ...

1990
Timothy Park

A set of rigorous diagnostic techniques is used to evaluate the forecasting performance of five multivariate time-series models for the U.S. cattle sector. The root-meansquared-error criterion along with an evaluation of the rankings of forecast errors reveals that the Bayesian vector autoregression (BVAR) and the unrestricted VAR (UVAR) models generate forecasts which are superior to both a re...

2008
Taras Bodnar

In the paper the asymptotic distributions of sample optimal portfolio weights are derived. This is done under the weak assumption on the data generating process. It is assumed that the k -dimensional vector of asset returns follows a VARMA( 1 1 , p q )GARCH( 2 2 , p q ) process with the elliptically distributed error process. The estimators of the mean vector and the covariance matrix of the as...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->